Johnson RJ, Segal MS, Sautin Y, Nakagawa T, Feig DI, Kang DH et al (2007) Potential role of sugar (fructose) in the epidemic of hypertension, obesity and the metabolic syndrome, diabetes, kidney disease, and cardiovascular disease. Am J Clin Nutr 86(4):899–906
CAS
Google Scholar
Malik VS, Sculze MB, Hu FB (2006) Intake of sugar-sweetened beverages and weight gain: a systematic review. Am J Clin Nutr 84(2):274–288
CAS
Google Scholar
Malik VS, Willett WC, Hu FB (2009) Sugar-sweetened beverages and BMI in children and adolescents: reanalyses of a meta-analysis. Am J Clin Nutr 89(1):438–439
Article
CAS
Google Scholar
Vartanian LR, Schwartz MB, Brownell KD (2007) Effects of soft drink consumption on nutrition and health: a systematic review and meta-analysis. Am J Public Health 97(4):667–675
Article
Google Scholar
Dhingra R (2007) Soft drink consumption and risk of developing cardiometabolic risk factors and the metabolic syndrome in middle-aged adults in the community. Circulation 116(5):480–488
Article
Google Scholar
Yoo S, Nicklas T, Baranowski T, Zakeri IF, Yang SJ, Srinivasan SR, Berenson GS et al (2004) Comparison of dietary intakes associated with metabolic syndrome risk factors in young adults: the Bogalusa heart study. Am J Clin Nutr 80(4):841–848
CAS
Google Scholar
Montonen J, Jarvinen R, Knekt P, Heliovaara M, Reunanen A (2007) Consumption of sweetened beverages and intakes of fructose and glucose predict type 2 diabetes occurrence. J Nutr 137(6):1447–1454
CAS
Google Scholar
Schulze MB, Manson JE, Ludwig DS, Colditz GA, Stampfer MJ, Willett WC et al (2004) Sugar-sweetened beverages, weight gain, and incidence of type 2 diabetes in young and middle-aged women. JAMA 292:927–934
Article
CAS
Google Scholar
Assy N, Nasser G, Kamayse I, Nseir W, Nebiashvili Z, Djibre A et al (2008) Soft drink consumption linked with fatty liver in the absence of traditional risk factors. Can J Gastroenterol 22(10):811–816
Google Scholar
Ouyang X, Cirillo P, Sautin Y, McCall S, Brushette JL, Diehl AM et al (2008) Fructose consumption as a risk factor for non-alcoholic fatty liver disease. J Hepatol 48(6):993–999
Article
CAS
Google Scholar
Fung TT, Malik V, Rexrode KM, Manson JE, Willett WC, Hu FB (2009) Sweetened beverage consumption and risk of coronary heart disease in women. Am J Clin Nutr 89(4):1037–1042
Article
CAS
Google Scholar
Foreshee RA, Storey ML, Allison DB, Glinsmann WH, Hein GL, Lineback DR et al (2007) A critical examination of the evidence relating high fructose corn syrup and weight gain. Crit Rev Food Sci Nutr 47(6):561–582
Article
Google Scholar
Havel PJ (2005) Dietary fructose: implications for dysregulation of energy homeostasis and lipid/carbohydrate metabolism. Nutr Rev 63(5):133–157
Article
Google Scholar
Tappy L, Le KA (2010) Metabolic effects of fructose and the worldwide increase in obesity. Physiol Rev 90(1):23–46
Article
CAS
Google Scholar
Almiron-Roig E, Drewnowski A (2003) Hunger, thirst, and energy intakes following consumption of caloric beverages. Physiol Behav 79(4–5):767–773
Article
CAS
Google Scholar
DellaValle DM, Roe LS, Rolls BJ (2005) Does the consumption of caloric and non-caloric beverages with a meal affect energy intake? Appetite 44(2):187–193
Article
Google Scholar
DiMeglio DP, Mattes RD (2000) Liquid versus solid carbohydrate: effects on food intake and body weight. Int J Obes 24(6):794–800
Article
CAS
Google Scholar
Bray GA (2004) The epidemic of obesity and changes in food intake: the fluoride hypothesis. Phys Behav 82(1):115–121
Article
CAS
Google Scholar
Bocarsly ME, Powelle ES, Avena NM, Hoebel BG (2010) High-fructose corn syrup causes characteristics of obesity in rats: increased body weight, body fat and triglyceride levels. Pharmacol Biochem Behav 97(1):101–106
Article
CAS
Google Scholar
Sanchez-Lozada LG, Mu W, Roncal C, Sautin YY, Abdelmalek M, Reungjui S et al (2010) Comparison of free fructose and glucose to sucrose in the ability to cause fatty liver. Eur J Nutr 49(1):1–9
Article
CAS
Google Scholar
Cacho J, Sevillano J, Casto De, Herrera E, Ramos MP (2008) Validation of simple indexes to assess insulin sensitivity during pregnancy in Wistar and Spraque-Dawley rats. Am J Physiol-Endoc M 295(5):E1269–E1276
CAS
Google Scholar
Van Nieuwenhuijzen PS, Li KM, Hunt GE, McGregor IS (2009) Weekly gamma-hydroxybutyrate exposure sensitizes locomotor hyperactivity to low-dose 3, 4-methylenedioxymethamphetamine in rats. Neuropsychobiology 60(3–4):195–203
Article
Google Scholar
Moretti M, de Souza AG, de Andrade VM, Romao PRT, Gavioli EC (2010) Emotional behavior in middle-ages rats: implications for geriatric psychopathologies. Physiol Behav 102(1):115–120
Article
Google Scholar
Alberti KG, Zimmet PZ (1998) Definition, diagnosis and classification of diabetes mellitus and it’s complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet Med 15:539–553
Article
CAS
Google Scholar
Sclafani A (1987) Carbohydrate taste, appetite, and obesity—an overview. Neurosci Biobehav Rev 11:131–153
Article
CAS
Google Scholar
Kumari D, Nair N, Ranveer SB (2011) Effect of dietary zinc deficiency on testes of Wistar rats: morphometric and cell quantification studies. J Trace Elem Med Bio 25(1):47–53
Article
CAS
Google Scholar
Esteban-Pretel G, Marin MP, Cabezuelo F, Moreno V, Renau-Piqueras J, Timodena J et al (2010) Vitamin A deficiency increases protein catabolism and induces urea cycle enzymes in rats. J Nutr 140(4):792–798
Article
CAS
Google Scholar
Landenburg L (2006) Feast or famine: the sympathetic nervous system response to nutrient intake. Cell Mol Neurobiol 26:497–508
Google Scholar
Boakes RA, Boot B, Clarke JV, Carver A (2000) Comparing albino and hooded Wistar rats of both sexes on a range of behavioral and learning tasks. Psychobiology 28(3):339–359
Google Scholar
Creel D (1980) Inappropriate use of albino animals as models in research. Pharmacol Biochem Behav 12(6):969–977
Article
CAS
Google Scholar
Nakagawa T, Hu HB, Zharikov S, Tuttle KR, Short RA, Glushkova O et al (2006) A causal role for uric acid in fructose-induced metabolic syndrome. Am J Physiol-Renal 290(3):F625–F631
Article
CAS
Google Scholar
Stanhope KL, Schwarz JM, Keim NL, Griffen SC, Bremer AA, Graham JL et al (2009) Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans. J Clin Invest 119(5):1322–1334
Article
CAS
Google Scholar
Swarbrick MM, Stanhope KL, Elliott SS, Graham JL, Krauss RM, Christiansen MP et al (2008) Consumption of fructose-sweetened beverages for 10 weeks increases postprandial triacylglycerol and apolipoprotein-B concentrations in overweight and obese women. BJN 100(5):947–952
Article
CAS
Google Scholar
Teff KL, Grudziak J, Townsend RR, Dunn TN, Grant RW, Adams SH et al (2009) Endocrine and metabolic effects of consuming fructose and glucose-sweetened beverages with meals in obese men and women: influence of insulin resistance on plasma triglyceride responses. J Clin Endocr Metab 94:1562–1569
Article
CAS
Google Scholar
Despres JP, Lemieux I (2006) Abdominal obesity and metabolic syndrome. Nature 444(7121):881–887
Article
CAS
Google Scholar
Abdul-Ghani MA, Tripathy D, DeFronzo RA (2006) Contributions of beta-cell dysfunction and insulin resistance to the pathogenesis of impaired glucose tolerance and impaired fasting glucose. Diabetes Care 29(5):1130–1139
Article
CAS
Google Scholar
Unwin N, Shaw J, Zimmet P, Alberti KGMM (2002) Impaired glucose tolerance and impaired fasting glycaemia: the current status on definition and intervention. Diabet Med 19:708–723
Article
CAS
Google Scholar
Faeh D, Minehira K, Schwarz JM, Periasami R, Seongsu P, Tappy L (2005) Effect of fructose overfeeding and fish oil administration on hepatic de novo lipogenesis and insulin sensitivity in healthy men. Diabetes 54(7):1907–1913
Article
CAS
Google Scholar
Le KA, Ith M, Kreis R, Faeh D, Bortolotti M, Tan C et al (2009) Fructose overconsumption causes dyslipidemia and ectopic lipid deposition in healthy subjects with and without a family history of type 2 diabetes. Am J Clin Nutr 89(6):1760–1765
Article
CAS
Google Scholar
Ellwood KC, Michaelis OE, Hallfrisch JG, Odorisio TM, Cataland S (1983) Blood insulin, glucose, fructose and gastric-inhibitory polypeptide levels in carbohydrate-sensitive and normal men given a sucrose or invert sugar tolerance-test. J Nutr 113(9):1732–1736
CAS
Google Scholar
Shreeve WW, Hoshi M, Kikkawa R (1971) Insulin responses to ingested sucrose vs fructose in obese patients. Diabetes 20(suppl):377
Google Scholar
Lee VM, Szepesi B, Hansen RJ (1986) Absence of a generalized disaccharide effect in adult female rats. J Nutr 116(8):1555–1560
CAS
Google Scholar
Michaelis OE, Nace CS, Szepesi B (1975) Demonstration of a specific metabolic effect of dietary disaccharides in rat. J Nutr 105(9):1186–1191
CAS
Google Scholar
Lim SJ, Mietus-Snyder M, Valente A, Schwarz J, Lustig RH (2010) The role of fructose in the pathogenesis of NAFLD and the metabolic syndrome. Nat Rev Gastroenterol Hepatol 7(5):251–264
Article
CAS
Google Scholar
Ruxton CHS, Gardner EJ, McNulty HM (2010) Is sugar consumption detrimental to health? A review of the evidence 1995–2006. Crit Rev Food Sci 50(1):1–19
Article
CAS
Google Scholar
Prinz RJ, Riddle DB (1986) Associations between nutrition and behavior in 5-year-old children. Nurt rev 44 (S3):151–158
Google Scholar
Prinz RJ, Roberts WA, Hantman E (1980) Dietary correlates of hyperactive behavior in children. J Consult Clin Psychol 48(6):760–769
Article
CAS
Google Scholar