European Journal of Nutrition

, Volume 51, Issue 4, pp 415–424 | Cite as

Effect of consumption of tomato juice enriched with n-3 polyunsaturated fatty acids on the lipid profile, antioxidant biomarker status, and cardiovascular disease risk in healthy women

  • F. J. García-Alonso
  • V. Jorge-Vidal
  • G. Ros
  • M. J. PeriagoEmail author
Original Contribution



We compared the effects of consumption of n-3 polyunsaturated fatty acids (PUFA)-enriched tomato juice versus plain tomato juice on the serum lipid profile and levels of biomarkers related to antioxidant status and cardiovascular disease (CVD) risk in women.


Eighteen healthy women participated in a 2-week intervention trial involving the daily intake of 500 mL of n-3 PUFA-enriched juice (n = 11) or plain tomato juice (n = 7). Each serving of enriched juice provided 250 mg of eicosapentaenoic acid (EPA) plus docosahexanoic acid (DHA). Both juices provided natural antioxidant compounds such as phenolics (181 mg) and lycopene (26.5 mg).


Intervention with the enriched juice had no effect on the lipid profile, and serum levels of triglycerides and cholesterol (total, LDL, and HDL) remained unchanged. The serum antioxidant status improved following juice intake, as revealed by an increase in total antioxidant capacity and a slight decrease in lipid peroxidation. The serum levels of homocysteine, a cardiovascular risk factor, decreased following n-3 PUFA-enriched juice consumption. A decrease in vascular adhesion molecule 1 (VCAM-1) levels was also noted after intake of either plain or enriched tomato juice, whereas intercellular adhesion molecule 1 (ICAM-1) levels only decreased following intake of the enriched juice.


Overall, stronger positive amelioration of CVD risk factors was observed following the intake of n-3 PUFA-enriched juice than after plain tomato juice consumption, which suggested a possible synergistic action between n-3 PUFAs and tomato antioxidants.


Cardiovascular diseases (CVD) PUFAs Tomato juice Antioxidants Homocysteine Lipid oxidation VCAM-1 ICAM-1 



We thank to Hero España S.A. and Denomega Nutritional Oil for providing the samples and ingredients of this study. The authors are grateful to the Ministry of Education and Science of the Spanish Government for the project AGL 2006-26965-E, and to the Fundación Seneca of the Murcia Regional Government for the project 05774/PI/07.


  1. 1.
    Das UN (2008) Essential fatty acids and their metabolites could function as endogenous HMG-CoA reductase and, and cardioprotective molecules. Lipids Health Dis 7:37–55CrossRefGoogle Scholar
  2. 2.
    Leal J, Luengo-Fernandez R, Gray A, Petersen S, Rayner M (2006) ACE enzyme inhibitors, anti-arrhytmic, anti-hypertensive, anti-atherosclerotic, anti-inflammatory, cytoprotective. Economic burden of cardiovascular diseases in the enlarged European Union. Eur Heart J 27(13):1610–1619CrossRefGoogle Scholar
  3. 3.
    Lloyd-Jones D, Adams RJ, Brown TM, Carnethon M, Dai S, De Simone G, Ferguson TB, Ford E, Furie K, Gillespie C, Go A, Greenlund K, Haase N, Hailpern S, Ho PM, Howard V, Kissela B, Kittner S, Lackland D, Lisabeth L, Marelli A, McDermott MM, Meigs J, Mozaffarian D, Mussolino M, Nichol G, Roger V, Rosamond W, Sacco R, Sorlie P, Stafford R, Thom T, Wasserthiel-Smoller S, Wong ND, Wylie-Rosett J (2010) Heart disease and stroke statistics-2010 Update. A report from the American Heart Association. Circulation 121:e46–e215CrossRefGoogle Scholar
  4. 4.
    Maas R, Böger RH (2003) Old and new cardiovascular risk factors: from unresolved issues to new opportunities. Atheroscler Suppl 4:5–17CrossRefGoogle Scholar
  5. 5.
    Bhatnagar D, Durrington PN (2003) Omega-3 fatty acids: their role in the prevention and treatment of atherosclerosis related risk factors and complications. Int J Clin Pract 57:305–314Google Scholar
  6. 6.
    Nishida C, Uauy R, Kumanyika S, Shetty P (2004) The Joint WHO/FAO Expert Consultation on diet, nutrition and the prevention of chronic diseases: process, product and policy implications. Public Health Nutr 7:245–250Google Scholar
  7. 7.
    De Caterina R, Massaro M (2005) Omega-3 fatty acids and the regulation of expression of endothelial pro-atherogenic and pro-inflammatory genes. J Membr Biol 206:103–116CrossRefGoogle Scholar
  8. 8.
    Calder PC, Yaqoob P (2009) Omega-3 polyunsaturated fatty acids and human health outcomes. Biofactors 35:266–272CrossRefGoogle Scholar
  9. 9.
    Lavie CJ, Milani RV, Mehra MR, Ventura HO (2009) Omega-3 polyunsaturated fatty acids and cardiovascular diseases. J Am Coll Cardiol (JACC) 54:585–594CrossRefGoogle Scholar
  10. 10.
    Patel JV, Tracey I, Hughes EA, Lip GYH (2000) Omega-3 polyunsaturated fatty acids: a necessity for a comprehensive secondary prevention strategy. Vasc Health Risk Manag 5:801–810Google Scholar
  11. 11.
    De Roos B, Mavromatis Y, Brouwer IA (2009) Long-chain n-3 polyunsaturated fatty acids: new insights into mechanisms relating to inflammation and coronary heart disease. Br J Pharmacol 158:413–428CrossRefGoogle Scholar
  12. 12.
    Vrablik M, Prusikova M, Snejdrlova M, Zlatohlavek L (2009) Omega-3 fatty acids and cardiovascular disease risk. Do we understand the relationship? Physiol Res 58((Suppl 1)):S19–S26Google Scholar
  13. 13.
    He K (2009) Fish, long-chain omega-3 polyunsaturated fatty acids and prevention of cardiovascular disease-Eat fish or take fish oil supplement? Prog Cardiovasc Dis 52:95–114CrossRefGoogle Scholar
  14. 14.
    World Health Organization (1985) Energy and protein requirements. Technical Report Series, No. 724. Report of a Joint FAO/WHO/UNU Expert Consultation. World Health Organization. GenevaGoogle Scholar
  15. 15.
    Baghurst K (2005) Executive summary of nutrient reference values for Australia and New Zealand including recommended dietary intakes. Commonwealth department of health and ageing, Australia. Ministryof health, New Zealand. National Health and Medical Research. Council.
  16. 16.
    Kris-Etherton PM, Grieger JA, Etherton TD (2009) Dietary reference intakes for DHA and EPA. Prostag Leukotr Ess 81:99–104CrossRefGoogle Scholar
  17. 17.
    Wallace JM, McCabe AJ, Robson PJ, Keogh MK, Murray CA, Kelly PM, Marquez-Ruiz G, McGlynn H, Gilmore WS, Strain JJ (2000) Bioavailability of n-3 polyunsaturated fatty acids (PUFA) in foods enriched with microencapsulated fish oil. Ann Nutr Metab 44:157–162CrossRefGoogle Scholar
  18. 18.
    Whelan J, Rust C (2006) Innovative dietary sources of n-3 fatty acids. Ann Rev Nutr 26:75–103CrossRefGoogle Scholar
  19. 19.
    Kolanowsky W, Swiderski F, Berger S (1999) Possibilities of fish oil application for food products enrichment with omega-3 PUFA. Int J Food Sci Nutr 50:39–49CrossRefGoogle Scholar
  20. 20.
    Metcalf RG, James MJ, Mantzioris E, Cleland LG (2003) A practical approach to increasing intakes of n-3 polyunsaturated fatty acids: use of novel foods enriched with n-3 fats. Eur J Clin Nutr 57:1605–1612CrossRefGoogle Scholar
  21. 21.
    Martin L, Zarn D, Hansen AM, Wismer W, Mazurak V (2008) Food products as vehicles for n-3 fatty acid supplementation. Can J Diet Pract Res 69:203–207CrossRefGoogle Scholar
  22. 22.
    Periago MJ, García-Alonso FJ, Jacob K, Olivares AB, Bernal MJ, Iniesta MD, Martínez C, Ros G (2008) Bioactive compounds, folates and antioxidant properties of tomatoes (Lycopersicum esculentum) during vine ripening. Int J Food Sci Nutr 12:1–15CrossRefGoogle Scholar
  23. 23.
    Garcia-Alonso FJ, Bravo S, Casas J, Pérez-Conesa D, Jacob K, Periago MJ (2009) Changes in antioxidant compounds during the shelf life of commercial tomato juices in different packaging materials. J Agric Food Chem 57:6815–6822CrossRefGoogle Scholar
  24. 24.
    Rao AV (2002) Lycopene, tomatoes, and the prevention of coronary heart disease. Exp Biol Med 227:908–913Google Scholar
  25. 25.
    Wilcox JK, Catignani GL, Lazarus S (2003) Tomatoes and cardiovascular health. Crit Rev Food Sci Nutr 43(1):1–18CrossRefGoogle Scholar
  26. 26.
    Iniesta MD, Pérez-Conesa D, García-Alonso FJ, Ros G, Periago MJ (2009) Folate content in tomato (Lycopersicum esculentum). Influence of cultivar, ripeness, year of harvest and pasteurization and storage temperatures. J Agric Food Chem 57:4739–4745CrossRefGoogle Scholar
  27. 27.
    Aguilar B, Rojas JC, Collados MT (2004) Metabolism of homocysteine and its relationship with cardiovascular disease. J Thromb Thrombolys 18:75–87CrossRefGoogle Scholar
  28. 28.
    Jacob K, Periago MJ, Böhm V, Berruezo GR (2008) Influence of lycopene and vitamin C from tomato juice on biomarkers of oxidative stress and inflammation. Br J Nutr 99:137–146CrossRefGoogle Scholar
  29. 29.
    Castelli WP (1988) Cholesterol and lipids in the risk of coronary artery disease. The Framingham Heart Study. Can J Cardiol 4(Suppl A):5A–10AGoogle Scholar
  30. 30.
    Buege JA, Aust SD (1978) Microsomal lipid peroxidation. Method Enzymol 52:302–310CrossRefGoogle Scholar
  31. 31.
    Nourooz-Zadeh J, Tajaddini-Sarmadi J, Wolf SP (1994) Measurement of plasma hydroperoxide concentrations by the ferrous oxidation-xylenol orange assay in conjunction with triphenilphosphine. Anal Biochem 220:403–409CrossRefGoogle Scholar
  32. 32.
    Miller NJ, Sampson J, Candeias LP, Bramley PM, Rice-Evans CA (1996) Antioxidant activities of carotenes and xanthophylls. Fed Eur Biochem Soc Lett 384:240–242CrossRefGoogle Scholar
  33. 33.
    Benzie IFF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem 239:70–76CrossRefGoogle Scholar
  34. 34.
    Esteve MJ, Farré R, Frígola A, López JC, Romera JM, Ramírez M, Gil A (1995) Comparison of voltammetric and high performance liquid chromatographic methods for ascorbic acid determination in infant formulas. Food Chem 52:99–102CrossRefGoogle Scholar
  35. 35.
    MacCrehan WA (1990) Determination of retinol, α-tocopherol and β-carotene in serum by liquid chromatography. Method Enzymol 189:172–181CrossRefGoogle Scholar
  36. 36.
    Baró L, Fonollá J, Peña JL, Martínez-Férez A, Lucena A, Jiménez J, Boza JJ, López-Huertas E (2003) n-3 fatty acids plus oleic acid and vitamin supplemented milk consumption reduces total and LDL cholesterol, homocysteine and levels of endothelial adhesion molecules in healthy humans. Clin Nutr 22:175–182CrossRefGoogle Scholar
  37. 37.
    Carrero JJ, Fonollá J, Mart JL, Jimenez J, Boza JJ, Lopez-Huertas E (2007) Intake of fish oil, oleic acid, folic acid, and vitamins B-6 and E for 1 year decreases plasma-C-reactive protein and reduces coronary heart disease risk factors in male patients in a cardiac rehabilitation program. J Nutr 137:384–390Google Scholar
  38. 38.
    Benito P, Caballero J, Moreno J, Gutiérrez-Alcántara C, Muñoz C, Rojo G, Garcia S, Soriguer FC (2006) Effects of milk enriched with ω-3 fatty acid, oleic acid and folic acid in patients with metabolic syndrome. Clin Nutr 25:581–587CrossRefGoogle Scholar
  39. 39.
    Raghu B, Venkatesan P (2008) Effect of n-3 fatty acid supplementation on blood glucose, lipid profile and cytokines in humans: a pilot study. Ind J Clin Biochem 23:85–88CrossRefGoogle Scholar
  40. 40.
    Fuhrman B, Elis A, Aviram M (1997) Hypocholesterolemic effect of lycopene and β-carotene is related to suppression of cholesterol synthesis and augmentation of LDL receptor activity in macrophages. Biochem Bioph Res Co 233(3):658–662CrossRefGoogle Scholar
  41. 41.
    Schmidt EB, Lervang HH, Varming K, Madsen P, Dyeberg J (1992) Lon-term supplementation with n-3 fatty acids, I: effect on blood lipids, haemostasis and blood pressure. Scand J Clin Lab Inv 52:221–228CrossRefGoogle Scholar
  42. 42.
    Ridker P (2003) Expert opinions: clinical application of C-reactive protein for cardiovascular disease detection and prevention. Circulation 107:363–369CrossRefGoogle Scholar
  43. 43.
    López-García E, Schulze MB, Manson JE, Meigs JB, Albert CM, Rifai N, Willett WC, Hu FB (2004) Consumption of (n-3) fatty acids is related to plasma biomarkers of inflammation and endothelial activation in women. J Nutr 134:1086–1811Google Scholar
  44. 44.
    Shen YC, Chen SL, Wang CK (2007) Contribution of tomato phenolics to antioxidation and down-regulation of blood lipids. J Agric Food Chem 55:6475–6481CrossRefGoogle Scholar
  45. 45.
    Thorlaksdottir AY, Skuladottir GV, Petursdottir AL, Tryggvadottir L, Ogmundsdottir HM, Eyfjord JE, Jonsson JJ, Hardardottir I (2006) Positive association between plasma antioxidant capacity and n-3 PUFA in red blood cells from women. Lipids 41:119–126CrossRefGoogle Scholar
  46. 46.
    Erdogan H, Fadillioglu E, Ozgocmen S, Sogut S, Ozyurt B, Akyol O, Ardicoglu O (2004) Effect of fish oil supplementation on plasma oxidant/antioxidant status in rats. Prostag Leukotr Ess 71:149–152CrossRefGoogle Scholar
  47. 47.
    Clarke R, Armitage J (2000) Vitamin supplements and cardiovascular risk: review of the randomized trials of homocysteine-lowering vitamin supplements. Semin Thromb Hemost 26:341–348CrossRefGoogle Scholar
  48. 48.
    Stanger O, Semmelrock HJ, Wonisch W, Bös U, Pabst E, Wascher TC (2002) Effects of folate treatment and homocysteine lowering on resistance vessel reactivity in atherosclerotic subjects. J Pharmacol Exp Ther 303:158–162CrossRefGoogle Scholar
  49. 49.
    Ueland PM, Refsum H, Beresford SA, Wollset SE (2000) The controversy over homocysteine and cardiovascular risk. Am J Clin Nutr 72:324–332Google Scholar
  50. 50.
    Ford ES, Smith SJ, Stroup DF, Steinberg KK, Mueller PW, Thacker SB (2002) Homocysteine and cardiovascular disease: a systematic review of the evidence with special emphasis on case control studies. Int J Epidemiol 31:59–70CrossRefGoogle Scholar
  51. 51.
    Huang T, Wahlqvist ML, Li D (2010) Docosahexaenoic acid decreases plasma homocysteine via regulating enzyme activity and nRNA expression involved in methionine metabolism. Nutrition 26:112–119CrossRefGoogle Scholar
  52. 52.
    Grundt H, Nilsen DWT, Mansoor MA, Hetland O, Nordoy A (2003) Reduction in homocysteine by n-3 polyunsaturated fatty acids after 1 year in a randomized double-blind study following an acute myocardial infarction: no effect on endothelial adhesion properties. Pathophysiol Haemost Thromb 33:88–95CrossRefGoogle Scholar
  53. 53.
    Chi Z, Melendez AJ (2007) Role of cell adhesion molecules and immune-cell migration in the initiation, onset and development of atherosclerosis. Cell Adh Migr 1:171–175CrossRefGoogle Scholar
  54. 54.
    Miles EA, Thies F, Wallace FA, Powell JR, Hurst TL, Newsholme EA, Calder PC (2001) Influence of age and dietary fish oil on plasma soluble adhesion molecule concentrations. Clin Sci (Lond) 100:91–100CrossRefGoogle Scholar
  55. 55.
    Liu X, Qu D, He F, Lu Q, Wang J, Cai D (2007) Effect of lycopene on the vascular endothelial function and expression of inflammatory agents in hyperhomocysteinemic rats. Asia Pac J Clin Nutr 16:244–248Google Scholar
  56. 56.
    Blum A, Moni M, Khazim K, Peleg A, Blum N (2007) Tomato-rich (Mediterranean) diet does not modify inflammatory markers. Clin Invest Med 30(2):E70–E74Google Scholar
  57. 57.
    Upchurch GR, Welch GN, Fabian AJ, Freedman JE, Johnson JL, Keaney JF Jr, Loscalzo J (1997) Homocysteine decreases bioavailable nitric oxide by a mechanism involving glutathione peroxidase. J Biol Chem 272:17012–17017CrossRefGoogle Scholar
  58. 58.
    Mestas J, Ley K (2008) Monocyte-endothelial cell interactions in the development of atherosclerosis. Trends Cardiovasc Med 18:228–232CrossRefGoogle Scholar
  59. 59.
    Rizzo M, Kotur-Stevuljevic J, Berneis K, Spinas G, Rini BG, Jelic-Ivanovic Z, Spasojevic-Kalimanovska V, Vekic J (2009) Atherogenic dyslipidemia and oxidative stress: a new look. Transl Res 153:217–223CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • F. J. García-Alonso
    • 1
  • V. Jorge-Vidal
    • 1
  • G. Ros
    • 1
  • M. J. Periago
    • 1
    • 2
    Email author
  1. 1.Department of Food Science and NutritionUniversity of MurciaMurciaSpain
  2. 2.Área de Conocimiento de Nutrición y Bromatología, Departamento de Tecnología de los Alimentos, Nutrición y BromatologíaUniversity of MurciaMurciaSpain

Personalised recommendations