Skip to main content
Log in

Triacylglycerol-rich lipoproteins derived from healthy donors fed different olive oils modulate cytokine secretion and cyclooxygenase-2 expression in macrophages: the potential role of oleanolic acid

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

Current evidence suggests that consumption of virgin olive oil (VOO) helps to protect against the development of atherosclerosis and that minor components such as oleanolic acid contribute to this effect. In this study, the effects of triacylglycerol-rich lipoproteins (TRLs) derived from olive oil on inflammatory processes in macrophages and how they are modulated by oleanolic acid was investigated.

Methods

TRLs isolated from healthy volunteers 2 and 4 h after a test meal containing VOO, pomace olive oil (POO) (the second pressing of olive oil, enriched in minor components) or POO enriched with oleanolic acid (OPOO) were incubated with macrophages derived from the human monocyte cell line, THP-1.

Results

All types of TRLs caused a decrease of about 50% in the secretion of monocyte chemoattractant protein-1 (MCP-1) by the cells. Interleukin (IL)-6 secretion was also significantly decreased by 2 and 4 h VOO TRLs and by 4 h OPOO TRLs. In contrast, increased IL-1β secretion was observed with all 2 h TRL types, and increased tumour necrosis factor-α (TNF-α) production with 2 h VOO and POO, but not OPOO, TRLs. TRLs isolated after 4 h, however, had no significant effects on TNF-α secretion and increased IL-1β secretion only when they were derived from VOO. Cyclooxygenase-2 (COX-2) mRNA expression was strongly down-regulated by all types of TRLs, but protein expression was significantly depressed only by 4 h OPOO TRLs.

Conclusion

These findings demonstrate that TRLs derived from olive oil influence inflammatory processes in macrophages and suggest that oleanolic acid may have beneficial effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Bravo E, Napolitano M, Botham KM (2010) Postprandial lipid metabolism: the missing link between lifestyle habits and the increasing incidence of metabolic diseases in Western Countries? Open Transl Med J 2:1–13

    Article  CAS  Google Scholar 

  2. Bansal S, Buring JE, Rifai N, Mora S, Sacks FM, Ridker PM (2007) Fasting compared with nonfasting triglycerides and risk of cardiovascular events in women. JAMA 298:309–316

    Article  CAS  Google Scholar 

  3. Nordestgaard BG, Benn M, Schnohr P, Tybjaerg-Hansen A (2007) Non fasting triglycerides and risk of myocardial infarction, ischemic heart disease, and death in men and women. JAMA 298:299–308

    Article  CAS  Google Scholar 

  4. Kadar A, Glasz T (2001) Development of atherosclerosis and plaque biology. Cardiovasc Surg 9:109–121

    Article  CAS  Google Scholar 

  5. Alipour A, Elte JWF, van Zaanen HCT, Rietveld AP, Castro Cabezas M (2008) Novel aspects of postprandial lipemia in relation to atherosclerosis. Atheroscler Suppl 9:39–44

    Article  CAS  Google Scholar 

  6. Hyson D, Rutledge JC, Berglund L (2003) Postprandial lipemia and cardiovascular disease. Curr Atheroscler Rep 5:437–444

    Article  Google Scholar 

  7. Wilhelm MG, Cooper AD (2003) Induction of atherosclerosis by human chylomicron remnants: a hypothesis. J Atheroscler. Thromb 10:132–139

    Article  Google Scholar 

  8. Proctor SD, Vine DF, Mamo JCL (2002) Arterial retention of apolipoprotein B(48)- and B(100)- containing lipoproteins in atherosclerosis. Curr Opin Lipidol 13:461–470

    Article  CAS  Google Scholar 

  9. Proctor SD, Mamo JC (2003) Intimal retention of cholesterol dericved from apolipoprotein B100- and apolipoprotein B48-containing lipoproteins in carotid arteries of Watanabe heritable hyperlipidemic rabbits. Arterioscler Thromb Vasc Biol 23:1595–1600

    Article  CAS  Google Scholar 

  10. Pal S, Semorine K, Watts GF, Mamo J (2003) Identification of lipoproteins of intestinal origin in human atherosclerotic plaque. Clin Chem Lab Med 41:792–795

    CAS  Google Scholar 

  11. Rapp JH, Lespine A, Hamilton RL, Colyvas N, Chaumeton AH, Tweedie-Harman J, Kotite L, Kunitake ST, Havel RJ, Kane KP (1994) Triglyceride-rich lipoproteins isolated by selected-affinity anti-apolipoprotein B immunosorption from human atherosclerotic plaque. Arterioscler Thromb 14:1767–1774

    Article  CAS  Google Scholar 

  12. Bentley C, Hathaway N, Widdows J, Bejta F, De Pascale C, Avella M, Wheeler-Jones CPD, Botham KM, Lawson C (2010) Influence of chylomicron remnants on human monocyte activation in vitro. Nutr Metab Cardiovasc Dis (in press)

  13. Botham KM, Bravo E, Elliott J, Wheeler-Jones CPD (2005) Direct interaction of dietary lipids carried in chylomicron remnants with cells of the artery wall: implications for atherosclerosis development. Curr Pharmaceut Design 11:3681–3695

    Article  CAS  Google Scholar 

  14. Wheeler-Jones CPD (2007) Chylomicron remnants: mediators of endothelial dysfunction? Biochem Soc Trans 35:442–445

    Article  CAS  Google Scholar 

  15. Norata GD, Grigore L, Raselli S, Seccomandi PM, Hamsten A, Maggi FM, Ericksson P, Catapano AL (2006) Triglyceride-rich lipoproteins from hypertriglyceridemic subjects induce a pro-inflammatory response in the endothelium: molecular mechanisms and gene expression studies. J Mol Cell Cardiol 40:484–494

    Article  CAS  Google Scholar 

  16. Botham KM, Moore EH, De Pascale C, Bejta F (2007) The induction of macrophage foam cells by chylomicron remnants. Biochem Soc Trans 35:454–458

    Article  CAS  Google Scholar 

  17. Keys A, Menotti A, Karvonen MJ, Aravanis C, Blackburn H, Buzina R, Djordjevic BS, Dontas AS, Fidanza F, Keys MH, Kromhout D, Nedeljkovic S, Punsar S, Seccareccia F, Toshima H (1986) The diet and 15-year death rate in the seven countries study. Am J Epidemiol 124:903–915

    CAS  Google Scholar 

  18. Stark AH, Madar Z (2002) Olive oil as a functional food: epidemiology and nutritional approaches. Nutr Rev 60:170–176

    Article  Google Scholar 

  19. Estruch R, Martínez-González MA, Corella D, Salas-Salvadó J, Ruiz-Gutiérrez V, Covas MI, Fiol M, Gómez-Gracia E, López-Sabater MC, Vinyoles E, Arós F, Conde M, Lahoz C, Lapetra J, Sáez G, Ros E, Study Investigators PREDIMED (2006) Effects of a mediterranean-style diet on cardiovascular risk factors: a randomized trial. Ann Intern Med 145:1–11

    Google Scholar 

  20. Mattson F, Grundy S (1985) Comparison of effects of dietary saturated, monounsaturated, and polyunsaturated fatty acids on plasma lipids and lipoproteins in man. J Lipid Res 26:194–202

    CAS  Google Scholar 

  21. Pérez-Jiménez F, Ruano J, Perez-Martinez P, Lopez-Segura F, Lopez-Miranda J (2007) The influence of olive oil on human health: not a question of fat alone. Mol Nutr Food Res 51:1199–1208

    Article  Google Scholar 

  22. Dell’Agli M, Fagnani R, Mitro N, Scurati S, Masciadri M, Mussoni L, Galli GV, Bosisio E, Crestani M, DeFabiani E, Tremoli E, Caruso D (2006) Minor components of olive oil modulate proatherogenic adhesion molecules involved in endothelial activation. J Agric Food Chem 54:3259–3264

    Article  Google Scholar 

  23. Perona JS, Cabello-Moruno R, Ruiz-Gutierrez V (2007) Modulation of the effects of chylomicron remnants on endothelial function by minor dietary lipid components. Biochem Soc Trans 35:446–450

    Article  CAS  Google Scholar 

  24. Moreno JJ (2003) Effect of olive oil minor components on oxidative stress and arachidonic acid mobilization and metabolism by macrophages RAW 246.7. Free Rad Biol Med 35:1073–1081

    Article  CAS  Google Scholar 

  25. Vivancos M, Moreno JJ (2005) β-Sitosterol modulates antioxidant enzyme response in RAW 264.7 macrophages. Free Rad Biol Med 39:91–97

    Article  CAS  Google Scholar 

  26. Vivancos M, Moreno JJ (2008) effect of resveratrol, tyrosol and β-sitosterol on oxidized low density lipoprotein-stimulated oxidative stress, arachidonic acid release and prostaglandin E2 synthesis by RAW 264.7 macrophages. Brit J Nutr 99:1199–1207

    Article  CAS  Google Scholar 

  27. Rodriguez–Rodriguez R, Herrera MD, Perona JS, Ruiz-Gutierrez V (2004) Potential vasorelaxant effects of oleanolic acid and erythrodiol, two triterpenoids contained in ‘orujo’ olive oil, on rat aorta. Br J Nutr 92:635–642

    Article  Google Scholar 

  28. Marquez-Martin A, De La Puerta R, Fernandez-Arche A, Ruiz-Gutierrez V, Yaqoob P (2006) Modulation of cytokine secretion by pentacyclic triterpenes from olive pomace oil in human mononuclear cells. Cytokine 36:211–217

    Article  CAS  Google Scholar 

  29. Martínez-González J, Rodríguez-Rodríguez R, González-Díez M, Rodríguez C, Herrera MD, Ruiz-Gutierrez V, Badimon L (2008) Oleanolic acid induces prostacyclin release in human vascular smooth muscle cells through a cyclooxygenase-2-dependent mechanism. J Nutr 138:443–448

    Google Scholar 

  30. Rodriguez–Rodriguez R, Stankevicius E, Herrera MD, Ostergaard L, Andersen MR, Ruiz-Gutierrez V, Simonsen U (2008) Oleanolic acid induces relaxation and calcium-independent release of endothelium-derived nitric oxide. Br J Pharmacol 155:535–546

    Article  Google Scholar 

  31. Fernandez-Arche A, Marquez-Martin A, a Vazquez R, Perona J, Terencio C, Perez-Camino C, Ruiz-Gutierrez V (2009) Long-chain fatty alcohols from pomace olive oil modulate the release of proinflammatory mediators. J Nutr Biochem 20:155–162

    Article  CAS  Google Scholar 

  32. Folch JL, Lee M, Stanley GSH (1957) A simple method of the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509

    CAS  Google Scholar 

  33. Perona JS, Avella M, Botham KM, Ruiz-Gutierrez V (2008) Differential modulation of hepatic VLDL secretion by triglyceride-rich lipoproteins derived from different oleic acid rich dietary oils. Br J Nutr 99:29–36

    Article  CAS  Google Scholar 

  34. Perona JS, Ruiz-Gutierrez V (2004) Quantification of major lipid classes in human triacylglycerol-rich lipoproteins by high-performance liquid chromatography with evaporative light-scattering detection. J Sep Sci 27:653–659

    Article  CAS  Google Scholar 

  35. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:2002–2007

    Article  Google Scholar 

  36. Ting HJ, Stice JP, Schaff UY, Hui DY, Rutledge JC, Knowlton AA, Passerini AG, Simon SI (2007) Triglyceride-rich lipoproteins prime aortic endothelium for an enhanced inflammatory response to tumor necrosis factor-{alpha}. Circ Res 100:381–390

    Article  CAS  Google Scholar 

  37. Wang L, Gill R, Pedersen TL, Higgins LJ, Newman JW, Rutledge JC (2009) Triglyceride-rich lipoprotein lipolysis releases neutral and oxidized FFAs that induce endothelial cell inflammation. J Lipid Res 50:204–213

    Article  CAS  Google Scholar 

  38. Higgins LJ, Rutledge JC (2009) Inflammation associated with the postprandial lipolysis of triglyceride-rich lipoproteins by lipoprotein lipase. Curr Atheroscler Rep 11:199–205

    Article  CAS  Google Scholar 

  39. Bermudez B, Lopez S, Pacheco YM, Villar J, Muriana FJG, Hoheisel JD, Bauer A, Abia R (2008) Influence of postprandial triglyceride-rich lipoproteins on lipid-mediated gene expression in smooth muscle cells of the human coronary artery. Cardiovasc Res 79:294–303

    Article  CAS  Google Scholar 

  40. Bogani P, Galli C, Villa M, Visioli F (2007) Postprandial anti-inflammatory and antioxidant effects of extra virgin olive oil. Atherosclerosis 190:181–186

    Article  CAS  Google Scholar 

  41. Perona JS, Martinez-Gonzalez J, Sanchez-Dominguez JM, Badimon L, Ruiz-Gutierrez V (2004) The unsaponifiable fraction of virgin olive oil in chylomicrons from men improves the balance between vasoprotective and prothrombotic factors released by endothelial cells. J Nutr 134:3284–3289

    CAS  Google Scholar 

  42. Palmer AM, Nova E, Anil E, Jackson K, Bateman P, Wolstencroft E, Williams CM, Yaqoob P (2005) Differential uptake of subfractions of triglyceride-rich lipoproteins by THP-1 macrophages. Atherosclerosis 180:233–244

    Article  CAS  Google Scholar 

  43. Gianturco SH, Bradley WA, Gotto AM, Morrisett JD, Peavy DL (1982) Hypertriglyceridemic very low density lipoproteins induce triglyceride synthesis and accumulation in mouse peritoneal macrophages. J Clin Invest 70:168–178

    Article  CAS  Google Scholar 

  44. Alipour A, van Oostrom AJ, Izraeljan A, Verseyden C, Collins JM, Frayn KN, Plokker TWM, Elte JWF, Castro Cabezas M (2008) Leukocyte activation by triglyceride-rich lipoproteins. Arterioscler Thromb Vasc Biol 28:792–797

    Article  CAS  Google Scholar 

  45. De Pascale C, Graham V, Fowkes RC, Wheeler-Jones CPD, Botham KM (2009) Suppression of nuclear factor-κB activity in macrophages by chylomicron remnants: modulation by the fatty acid composition of the particles. FEBS J 276:5689–5702

    Article  Google Scholar 

  46. Napolitano M, Bravo E (2005) Lipid metabolism and TNF-alpha secretion in response to dietary sterols in human monocyte derived macrophages. Eur J Clin Invest 35:482–490

    Article  CAS  Google Scholar 

  47. Chatterjee A, Black SM, Catravas JD (2008) Endothelial nitric oxide (NO) and its pathophysiologic regulation. Vascul Pharmacol 49:134–140

    Article  CAS  Google Scholar 

  48. Cipollone F, Cicolini G, Bucci M (2008) Cyclooxygenase and prostaglandin synthases in atherosclerosis: recent insights and future prospectives. Pharmacol Ther 118:161–180

    Article  CAS  Google Scholar 

  49. Chan E, Zhang H, Fernandez P, Edelman S, Pillinger M, Ragolia L, Palaia T, Carsons S, Reiss A (2007) Effect of cyclooxygenase inhibition on cholesterol efflux proteins and atheromatous foam cell transformation in THP-1 human macrophages: a possible mechanism for increased cardiovascular risk. Arthritis Res Therap 9: R4. http://arthritis-research.com/content/9/1/R4

  50. Ritter JM, Harding I, Warren JB (2009) Precaution, cyclooxygenase inhibition, and cardiovascular risk. Trends Pharmacol Sci 30:503–508

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from Comision Interministerial de Ciencia y Tecnologia (CICYT, AGL2005-00572 and AGL2008-02285) and RETICS (RD06/0045/002). We should like to thank Mirela Rada for the supply of oleanolic acid and Emilio Montero for help with obtaining the serum samples.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. M. Botham.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 53 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Graham, V.S., Lawson, C., Wheeler-Jones, C.P.D. et al. Triacylglycerol-rich lipoproteins derived from healthy donors fed different olive oils modulate cytokine secretion and cyclooxygenase-2 expression in macrophages: the potential role of oleanolic acid. Eur J Nutr 51, 301–309 (2012). https://doi.org/10.1007/s00394-011-0215-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-011-0215-2

Keywords