Skip to main content

Vitamin C levels in blood are influenced by polymorphisms in glutathione S-transferases

Abstract

Purpose

Glutathione S-transferases (GSTs) are intimately involved in combating oxidative stress and in detoxifying xenobiotics. Our objective was to examine possible interactions between polymorphisms in GST genes and plasma vitamin C, tocopherols and carotenoids in 149 reference subjects and 239 subjects occupationally exposed to mineral fibres (asbestos, rock wool, glass fibre), agents that induce oxidative stress.

Methods

Deletion of GSTM1 and GSTT1, and substitution 105Ile/Val in GSTP1 genes were determined by PCR, antioxidants in plasma were measured by HPLC.

Results

Tocopherols and carotenoids were affected by age, sex, smoking, occupational exposure to fibres, but not by GST polymorphisms. Vitamin C level was influenced by sex, smoking and occupational exposure. Subjects with deletion of GST had lower vitamin C levels compared with subjects carrying the functional gene variant. Vitamin C levels varied according to GSTM1 polymorphism in the whole group (p < 0.05), in all reference subjects (p < 0.05), in the asbestos factory reference group (p < 0.05), and according to GSTT1 polymorphism in reference group of the rock wool plant (p < 0.05). Vitamin C levels were approximately 20% lower in subjects with both functionally deficient genes in the whole group (p < 0.01) and in all non-exposed subjects (p < 0.05).

Conclusions

The correspondence of lower vitamin C levels with non-functional GST isoenzymes may indicate a causal connection between two antioxidant defence pathways, also the underlying mechanism is not yet clear. It seems that supplementation by natural antioxidants is particularly important for subjects with unfavourable genetic makeup and in those exposed to oxidative stress.

This is a preview of subscription content, access via your institution.

References

  1. Parke DV (1999) Nutritional antioxidants and disease prevention: mechanisms of action. In: Basu TK, Temple NJ, Garg ML (eds) Antioxidants in human health and disease. CABI Publishing, New York, pp 1–13

    Google Scholar 

  2. Halliwell B, Whiteman M (1997) Antioxidant and prooxidant properties of vitamin C. In: Packer L, Fuchs J (eds) Vitamin C in health and disease. Marcel Dekker Inc., New York, pp 59–73

    Google Scholar 

  3. Peterkofsky B (1991) Ascorbate requirement for hydroxylation and secretion of procollagen: relationship to inhibition of collagen synthesis in scurvy. Am J Clin Nutr 54:1135–1140

    Google Scholar 

  4. Fryer MJ (1992) The antioxidant effects of thylakoid vitamin E (alpha-tocopherol). Plant Cell Environ 15:381–392

    Article  CAS  Google Scholar 

  5. Babinska K, Bederova A, Grancicova E, Magalova T, Brtkova A (1995) Serum levels of vitamins A, C and E in the population of Slovakia. Bratisl Lek Listy 96:430–434

    CAS  Google Scholar 

  6. Mannervik B, Awasthi YC, Board PG, Hayes JD et al (1992) Nomenclature for human glutathione transferases. Biochem J 282:305–306

    CAS  Google Scholar 

  7. Coggan M, Whitebread L, Whittington A, Board P (1998) Structure and organization of the human theta-class glutathione S-transferase and D-dopachrome tautomerase gene complex. Biochem J 334:617–623

    CAS  Google Scholar 

  8. Board PG, Baker RT, Chelvanayagam G, Jermiin LS (1997) Zeta, a novel class of glutathione transferases in a range of species from plants to human. Biochem J 328:929–935

    CAS  Google Scholar 

  9. Board PG, Coggan M, Chelvanayagam G, Easteal S et al (2000) Identification, characterization, and crystal structure of the Omega class glutathione transferases. J Biol Chem 275:24798–24806

    Article  CAS  Google Scholar 

  10. Rowe JD, Nieves E, Listowsky I (1997) Subunit diversity and tissue distribution of human glutathione S-transferases: interpretation base on electrospray ionization-MS and peptide sequence-specific antisera. Biochem J 325:481–486

    CAS  Google Scholar 

  11. Sheehan D, Meade G, Foley VM, Dowd CA (2001) Structure, function and evolution of glutathione transferases: implications for classification of non-mammalian members of an ancient enzyme superfamily. Biochem J 360:1–16

    Article  CAS  Google Scholar 

  12. Douglas KT (1987) Mechanism of action of glutathione-dependent enzymes. Adv Enzymol Relat Areas Mol Biol 59:103–167

    CAS  Google Scholar 

  13. Hayes JD, Pulford DJ (1995) The glutathione S-transferase supergene family: regulation of GST and the contribution of the isoenzymes to cancer chemoprevention and drug resistance. Crit Rev Biochem Mol Biol 30:445–600

    Article  CAS  Google Scholar 

  14. Talalay P (2000) Chemoprotection against cancer by induction of phase 2 enzymes. Biofactors 12:5–11

    Article  CAS  Google Scholar 

  15. Smith CM, Kelsey KT, Wiencke JK, Leyden K et al (1994) Inherited glutathione-S-transferase deficiency is a risk factor for pulmonary asbestosis. Cancer Epidemiol Biomarkers Prev 3:471–477

    CAS  Google Scholar 

  16. Brasch-Andersen C, Christiansen L, Tan Q, Haagerup A et al (2004) Possible gene dosage effect of glutathione-S-transferases on atopic asthma: using real-time PCR for quantification of GSTM1 and GSTT1 gene copy numbers. Hum Mutat 24:208–214

    Article  CAS  Google Scholar 

  17. Agalliu I, Langeberg WJ, Lampe JW, Salinas CA, Stanford JL (2006) Glutathione S-tansferase M1, T1 and P1 polymorphisms and prostate cancer risk in middle-aged men. Prostate 66:146–156

    Article  CAS  Google Scholar 

  18. Manfredi S, Calvi D, del Fiandra M, Botto N et al (2009) Glutathione S-transferase T1-and M1-null genotypes and coronary artery disease risk in patients with Type 2 diabetes mellitus. Pharmacogenomics 10:29–34

    Article  CAS  Google Scholar 

  19. Bohanec GP, Logar D, Tomsic M, Rozman B, Dolzan V (2009) Genetic polymorphisms of glutathione S-transferases and disease activity of rheumatoid arthritis. Clin Exp Rheumatol 27:229–236

    Google Scholar 

  20. Polonikov AV, Yarosh SL, Kokhtenko EV, Starodubova NI et al (2010) The functional genotype of glutathione S-transferase T1 gene is strongly associated with increased risk of idiopathic infertility in Russian men. Fertil Steril 94:1144–1147. doi:10.1016/j.fertnstert.2009.11.006

    Article  CAS  Google Scholar 

  21. Li D, Dandara C, Parker MI (2010) The 341C/T polymorphism in the GSTP1 gene is associated with increased risk of oesophageal cancer. BMC Genet 11:47. doi:10.1186/1471-2156-11-47

    Article  Google Scholar 

  22. Board P, Coggan M, Johnston P, Ross V et al (1990) Genetic heterogeneity of the human glutathione transferases: a complex of gene families. Pharmacol Ther 48:357–369

    Article  CAS  Google Scholar 

  23. Pemble S, Schroeder KR, Spencer SR, Meyer DJ et al (1994) Human glutathione S-transferase theta (GSTT1): cDNA cloning and the characterization of a genetic polymorphism. Biochem J 300:271–276

    CAS  Google Scholar 

  24. Seow A, Vainio H, Yu MC (2005) Effect of glutathione-S-transferase polymorphisms on the cancer preventive potential of isothiocyanates: an epidemiological perspective. Mutat Res 592:58–67

    CAS  Google Scholar 

  25. Cornelis MC, El-Sohemy A, Campos H (2007) GSTT1 genotype modifies the association between cruciferous vegetable intake and the risk of myocardial infarction. Am J Clin Nutr 86:752–758

    CAS  Google Scholar 

  26. Riganti C, Aldieri E, Bergandi L, Tomatis M et al (2003) Long and short fiber amosite asbestos alters at a different extent the redox metabolism in human lung epithelial cells. Toxicol Appl Pharmacol 19:106–115

    Article  Google Scholar 

  27. Kamp DW, Weitzman SA (1999) The molecular basis of asbestos induced lung injury. Thorax 54:638–652

    Article  CAS  Google Scholar 

  28. Robledo R, Mosssman B (1999) Cellular and molecular mechanisms of asbestos-induced fibrosis. J Cell Physiol 180:158–166

    Article  CAS  Google Scholar 

  29. Baan RA, Grosse Y (2004) Man-made mineral (vitreous) fibres: evaluation of cancer hazards by the IARC Monographs Programme. Mutat Res 553:43–58

    CAS  Google Scholar 

  30. Kamp DW, Weitzman SA (1997) Asbestosis: clinical spectrum and pathogenic mechanisms. Proc Soc Exp Biol Med 214:12–26

    CAS  Google Scholar 

  31. Mossman BT, Churg A (1998) Mechanisms in the pathogenesis of asbestosis and silicosis. Am J Respir Crit Care Med 157:1666–1680

    CAS  Google Scholar 

  32. Driscoll KE, Carter JM, Borm PJA (2002) Antioxidant defence mechanisms and the toxicity of fibrous and nonfibrous particles. Inhal Toxicol 14:101–118

    Article  CAS  Google Scholar 

  33. Schins RPF (2002) Mechanisms of genotoxicity of particles and fibers. Inhal Toxicol 14:57–78

    Article  CAS  Google Scholar 

  34. Bell DA, Taylor JA, Paulson DF, Robertson CN et al (1993) Genetic risk and carcinogen exposure: a common inherited defect of the carcinogen-metabolism gene glutathione S-transferase M1 (GSTM1) that increases susceptibility to bladder cancer. J Natl Cancer Inst 85:1159–1164

    Article  CAS  Google Scholar 

  35. Harries LW, Stubbins MJ, Forman D, Howard GC, Wolf CR (1997) Identification of genetic polymorphisms at the glutathione S-transferase Pi locus and association with susceptibility to bladder, testicular and prostate cancer. Carcinogenesis 18:641–644

    Article  CAS  Google Scholar 

  36. Cerhata D, Bauerova A, Ginter E (1994) Determination of ascorbic acid in blood serum using high-performance liquid chromatography and its correlation with spectrophotometric (colorimetric) determination. Ceska Slov Farm 43:166–168

    CAS  Google Scholar 

  37. Hess D, Keller HE, Oberlin B, Bonfanti R, Schüep W (1991) Simultaneous determination of retinol, tocopherols, carotenes and lycopene in plasma by means of high-performance liquid chromatography on reversed phase. Int J Vitam Nutr Res 61:232–238

    CAS  Google Scholar 

  38. Dusinska M, Barancokova M, Kazimirova A, Harrington V et al (2004) Does occupational exposure to mineral fibres cause DNA or chromosome damage? Mutat Res 553:103–110

    CAS  Google Scholar 

  39. Dusinska M, Collins A, Kazimirova A, Barancokova M et al (2004) Genotoxic effects of asbestos in humans. Mutat Res 553:91–102

    CAS  Google Scholar 

  40. Dusinska M, Dzupinkova Z, Wsolova Z, Harrington V, Collins AR (2006) Possible involvement of XPA in repair of oxidative DNA damage, deduced from analysis of damage, repair and genotype in a human population study. Mutagenesis 21:205–211

    Article  CAS  Google Scholar 

  41. Staruchova M, Volkovova K, Lajdova A, Mislanova C et al (2006) Importance of diet in protection against oxidative damage. Neuro Endocrinol Lett 27:112–115

    Google Scholar 

  42. Staruchova M, Collins AR, Volkovova K, Mislanová C et al (2008) Occupational exposure to mineral fibres. Biomarkers of oxidative damage and antioxidant defence and associations with DNA damage and repair. Mutagenesis 23:249–260

    Article  CAS  Google Scholar 

  43. Horska A, Kazimirova A, Barancokova M, Wsolova L et al (2006) Genetic predisposition and health effect of occupational exposure to asbestos. Neuro Endocrinol Lett 27:100–103

    CAS  Google Scholar 

  44. Tulinska J, Jahnova E, Dusinska M, Kuricova M et al (2004) Immunomodulatory effects of mineral fibres in occupationally exposed workers. Mutat Res 553:111–124

    CAS  Google Scholar 

  45. Ilavska S, Jahnova E, Tulinska J, Horvathova M et al (2005) Immunological monitoring in workers occupationally exposed to asbestos. Toxicology 206:299–308

    Article  CAS  Google Scholar 

  46. Kazimirova A, Barancokova M, Wsolova L, Dusinska M (2007) Cytogenetic analysis of lymphocytes of workers occupationally exposed to rockwool and glass fibres. Molecular-epidemiologic study. Chem Lett 101:192–193

    Google Scholar 

  47. Longuemaux S, Deloménie C, Gallou C, Méjean A et al (1999) Candidate genetic modifiers of individual susceptibility to renal cell carcinoma: a study of polymorphic human xenobiotic-metabolizing enzymes. Cancer Res 59:2903–2908

    CAS  Google Scholar 

  48. Sarmanová J, Tynková L, Süsová S, Gut I, Soucek P (2000) Genetic polymorphisms of biotransformation enzymes: allele frequencies in the population of the Czech Republic. Pharmacogenetics 10:781–788

    Article  Google Scholar 

  49. Voho A, Impivaara O, Järvisalo J, Metsola K et al (2006) Distribution of glutathione S-transferase M1, P1 and T1 genotypes in different age-groups of Finns without diagnosed cancer. Cancer Detect Prev 30:144–151

    Article  CAS  Google Scholar 

  50. Probst-Hensch NM, Imboden M, Felber Dietrich D, Barthélemy JC et al (2008) Glutathione S-transferase polymorphisms, passive smoking, obesity, and heart rate variability in nonsmokers. Environ Health Perspect 116:1494–1499

    Article  Google Scholar 

  51. Zendehdel K, Bahmanyar S, McCarthy S, Nyren O et al (2009) Genetic polymorphisms of glutathione S-transferase genes GSTP1, GSTM1, and GSTT1 and risk of esophageal and gastric cardia cancers. Cancer Causes Control 20:2031–2038

    Article  Google Scholar 

  52. Dusinska M, Ficek A, Horska A, Raslova K et al (2001) Glutathione S-transferase polymorphisms influence the level of oxidative DNA damage and antioxidant protection in humans. Mutat Res 482:47–55

    CAS  Google Scholar 

  53. Viezzer C, Norppa H, Clonfero E, Gabbani G et al (1999) Influence of GSTM1, GSTT1, GSTP1, and EPHX gene polymorphisms on DNA adduct level and HPRT mutant frequency in coke-oven workers. Mutat Res 431:259–269

    CAS  Google Scholar 

  54. Pavanello S, Clonfero E (2000) Biological indicators of genotoxic risk and metabolic polymorphisms. Mutat Res 463:285–308

    Article  CAS  Google Scholar 

  55. Buschini A, De Palma G, Poli P, Martino A et al (2003) Genetic polymorphism of drug-metabolizing enzymes and styrene-induced DNA damage. Environ Mol Mutagen 41:243–252

    Article  CAS  Google Scholar 

  56. Lee SH, Park E, Park YK (2010) Glutathione s-transferase m1 and t1 polymorphisms and susceptibility to oxidative damage in healthy Korean smokers. Ann Nutr Metab 56:52–58

    Article  CAS  Google Scholar 

  57. Blanchard J (1991) Effects of gender on vitamin C pharmacokinetics in man. J Am Coll Nutr 10:453–459

    CAS  Google Scholar 

  58. Wang X, Wu Y, Stonehuerner JG, Dailey LA et al (2006) Oxidant generation promotes iron sequestration in BEAS-2B cells exposed to asbestos. Am J Respir Cell Mol Biol 34:286–292

    Article  CAS  Google Scholar 

  59. Cardile V, Lombardo L, Belluso E, Panico A et al (2007) Toxicity and carcinogenicity mechanisms of fibrous antigorite. Int J Environ Res Public Health 4:1–9

    Article  CAS  Google Scholar 

  60. Dika Nguea H, de Reydellet A, Lehuédé P, De Meringo A et al (2008) Gene expression profile in monocyte during in vitro mineral fiber degradation. Arch Toxicol 82:355–362. doi:10.1007/s00204-007-0258-6

    Article  CAS  Google Scholar 

  61. van Poppel G, Verhagen H, van ‘t Veer P P, van Bladeren PJ (1993) Markers for cytogenetic damage in smokers: associations with plasma antioxidants and glutathione S-transferase mu. Cancer Epidemiol Biomarkers Prev 2:441–447

    Google Scholar 

  62. Jain A, Agrawal BK, Varma M, Jadhav AA (2009) Antioxidant status and smoking habits: relationship with diet. Singapore Med J 50:624–627

    CAS  Google Scholar 

  63. Savini I, Rossi A, Pierro C, Aviglianom L, Catani MV (2008) SVCT1 and SVCT2: key proteins for vitamin C uptake. Amino Acids 34:347–355

    Article  CAS  Google Scholar 

  64. Lo HW, Ali-Osman F (2007) Genetic polymorphism and function of glutathione S-transferases in tumor drug resistance. Curr Opin Pharmacol 7:367–374

    Article  CAS  Google Scholar 

  65. Dehghan M, Akhtar-Danesh N, McMillan CR, Thabane L (2007) Is plasma vitamin C an appropriate biomarker of vitamin C intake? A systematic review and meta-analysis. Nutr J 6:41. doi:10.1186/1475-2891-6-41

    Article  Google Scholar 

  66. Jacob RA (1994) Vitamin C. In: Shils ME, Olson JA, Shike M (eds) Modern Nutrition, 8th edn edn. Williams and Wilkins, pp, pp 432–448

    Google Scholar 

Download references

Acknowledgments

We thank all participants working in the asbestos and mineral wool factories, as well as the management, for their enthusiastic participation. Sampling and medical investigation were carried out with help of the National Institute of Public Health in Nitra, Banska Bystrica, Ziar nad Hronom and Trnava. We thank Anna Moravkova, Anna Gaziova, Renata Mateova, Zuzana Rostasova, Kristina Gavalova, Lubica Mikloskova, Jarmila Jantoskova and Viera Vachalkova for their excellent technical help during sampling, Dr. Ladislava Wsolova for kindly helping with statistical analysis of FIBRETOX data, and Prof. Andrew Collins for his critical comments. This work was supported by the EC project FIBRETOX, contract no: QLK4-1999-01629.

Conflict of interest

The authors declare that they have no financial and commercial conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Dusinska.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Horska, A., Mislanova, C., Bonassi, S. et al. Vitamin C levels in blood are influenced by polymorphisms in glutathione S-transferases. Eur J Nutr 50, 437–446 (2011). https://doi.org/10.1007/s00394-010-0147-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-010-0147-2

Keywords

  • GST polymorphisms
  • Antioxidants
  • Vitamin C
  • Oxidative stress
  • Exposure to mineral fibres
  • Individual susceptibility