Skip to main content

Advertisement

Log in

The contribution of α1B-adrenoceptor subtype in the renal vasculature of fructose-fed Sprague–Dawley rats

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

Fructose feeding induces a moderate increase in blood pressure, insulin resistance, and hyperinsulinemia. This study investigated the role of α1B-adrenoceptor subtype in the control of renal hemodynamic responses to exogenously administered angiotensin II (Ang II) and a set of adrenergic agonists in a model of high fructose-fed rats.

Methods

Sprague–Dawley rats were fed for 8 weeks with 20% fructose in drinking water (FFR). The renal cortical vasoconstriction to noradrenaline (NA), phenylephrine (PE), methoxamine (ME) and Ang II in the presence and absence of chloroethylclonidine (CEC) (α1B-adrenoceptor antagonist) was determined. Data, mean ± SEM or SD were subjected to ANOVA with significance at p < .05.

Results

FFR showed significant increase in the systolic blood pressure, plasma glucose, and insulin levels when compared to control. FFR expressed reduced renal cortical vascular sensitivity to NA, PE, ME, and Ang II. Furthermore, renal cortical vasoconstriction response to NA, PE, ME, and Ang II was blunted in the presence of CEC in control. While in FFR, renal cortical vasoconstriction to NA, PE, and ME was enhanced by CEC. Renal cortical vasoconstriction to Ang II in FFR was reduced in the presence of CEC.

Conclusions

In the presence of a hyperinsulinemic state resulting from chronic and high fructose feeding, an attenuated AT1 and α1-adrenoceptors response to Ang II and adrenergic stimuli respectively, is expected. In addition, α1B-adrenoceptor is the functional subtype that mediates renal cortical vasoconstriction in control rat, while high fructose feeding did influence the functionality of α1B-adrenoceptor in mediating the renal cortical hemodynamic changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Reaven GM (1997) Banting Lecture 1988. Role of insulin resistance in human disease. 1988. Nutrition 13(1):65

    CAS  Google Scholar 

  2. Navarro-Cid J, Maeso R, Perez-Vizcaino F, Cachofeiro V, Ruilope LM, Tamargo J, Lahera V (1995) Effects of losartan on blood pressure, metabolic alterations, and vascular reactivity in the fructose-induced hypertensive rat. Hypertension 26(6 Pt 2):1074–1078

    CAS  Google Scholar 

  3. Hwang IS, Ho H, Hoffman BB, Reaven GM (1987) Fructose-induced insulin resistance and hypertension in rats. Hypertension 10(5):512–516

    CAS  Google Scholar 

  4. DiBona GF, Kopp UC (1997) Neural control of renal function. Physiol Rev 77(1):75–197

    CAS  Google Scholar 

  5. Garcia-Sainz JA, Vazquez-Prado J, del Carmen Medina L (2000) Alpha 1-adrenoceptors: function and phosphorylation. Eur J Pharmacol 389(1):1–12

    Article  CAS  Google Scholar 

  6. Salomonsson M, Brannstrom K, Arendshorst WJ (2000) Alpha(1)-adrenoceptor subtypes in rat renal resistance vessels: in vivo and in vitro studies. Am J Physiol Renal Physiol 278(1):F138–147

    CAS  Google Scholar 

  7. Canessa LM, Piccio MM, Vachvanichsanong P, Sidhu A, Porter CC, Robillard JE, Felder RA, Jose PA (1995) Alpha 1B-adrenergic receptors in rat renal microvessels. Kidney Int 48(5):1412–1419

    Article  CAS  Google Scholar 

  8. Elhawary AM, Pang CC (1994) Alpha 1b-adrenoceptors mediate renal tubular sodium and water reabsorption in the rat. Br J Pharmacol 111(3):819–824

    CAS  Google Scholar 

  9. Khan MA, Sattar MA, Abdullah NA, Abdulla MH, Salman IM, Kazi RN, Swarup KR, Rathore HA, Basri F, Hussain NM, Dewa A, Johns EJ (2009) Functional subtypes of renal alpha1-adrenoceptor in spontaneously hypertensive rats with streptozotocin-induced experimental diabetic nephropathy. Kidney Blood Press Res 32(5):349–359

    Article  CAS  Google Scholar 

  10. Khan MA, Sattar MA, Abdullah NA, Johns EJ (2008) Alpha1B-adrenoceptors mediate adrenergically-induced renal vasoconstrictions in rats with renal impairment. Acta Pharmacol Sin 29(2):193–203

    Article  Google Scholar 

  11. Ran J, Hirano T, Fukui T, Saito K, Kageyama H, Okada K, Adachi M (2006) Angiotensin II infusion decreases plasma adiponectin level via its type 1 receptor in rats: an implication for hypertension-related insulin resistance. Metabolism 55(4):478–488

    Article  CAS  Google Scholar 

  12. Furuhashi M, Ura N, Takizawa H, Yoshida D, Moniwa N, Murakami H, Higashiura K, Shimamoto K (2004) Blockade of the renin-angiotensin system decreases adipocyte size with improvement in insulin sensitivity. J Hypertens 22(10):1977–1982

    Article  CAS  Google Scholar 

  13. Shinozaki K, Ayajiki K, Nishio Y, Sugaya T, Kashiwagi A, Okamura T (2004) Evidence for a causal role of the renin-angiotensin system in vascular dysfunction associated with insulin resistance. Hypertension 43(2):255–262

    Article  CAS  Google Scholar 

  14. Iyer SN, Katovich MJ, Raizada MK (1996) Changes in angiotensin AT1 receptor density during hypertension in fructose-fed rats. Adv Exp Med Biol 396:49–58

    CAS  Google Scholar 

  15. Taylor BA, Phillips SJ (1996) Detection of obesity QTLs on mouse chromosomes 1 and 7 by selective DNA pooling. Genomics 34(3):389–398

    Article  CAS  Google Scholar 

  16. Morioka Y, Koike H, Ikezumi Y, Ito Y, Oyanagi A, Gejyo F, Shimizu F, Kawachi H (2001) Podocyte injuries exacerbate mesangial proliferative glomerulonephritis. Kidney Int 60(6):2192–2204

    Article  CAS  Google Scholar 

  17. Li YQ, Ji H, Zhang YH, Ding DY, Ye XL (2006) Metabolic effects of telmisartan in spontaneously hypertensive rats. Naunyn Schmiedebergs Arch Pharmacol 373(4):264–270

    Article  CAS  Google Scholar 

  18. Abdullah MM, Xu Z, Pierce GN, Moghadasian MH (2007) The effects of simultaneous administration of dietary conjugated linoleic acid and telmisartan on cardiovascular risks in rats. Lipids 42(9):855–864

    Article  CAS  Google Scholar 

  19. Just A, Olson AJ, Whitten CL, Arendshorst WJ (2007) Superoxide mediates acute renal vasoconstriction produced by angiotensin II and catecholamines by a mechanism independent of nitric oxide. Am J Physiol Heart Circ Physiol 292(1):H83–92

    Article  CAS  Google Scholar 

  20. Abdulla MH, Sattar MA, Abdullah NA, Khan MA, Abdallah HH, Johns EJ (2009) Chronic treatment with losartan and carvedilol differentially modulates renal vascular responses to sympathomimetics compared to treatment with individual agents in normal Wistar Kyoto and spontaneously hypertensive rats. Eur J Pharmacol 612(1–3):69–74

    Article  CAS  Google Scholar 

  21. Hye Khan MA, Sattar MA, Abdullah NA, Johns EJ (2008) Influence of combined hypertension and renal failure on functional alpha(1)-adrenoceptor subtypes in the rat kidney. Br J Pharmacol 153(6):1232–1241

    Article  CAS  Google Scholar 

  22. Abdulla MH, Sattar MA, Khan MA, Abdullah NA, Johns EJ (2009) Influence of sympathetic and AT-receptor blockade on angiotensin II and adrenergic agonist-induced renal vasoconstrictions in spontaneously hypertensive rats. Acta Physiol (Oxf) 195(3):397–404

    Article  CAS  Google Scholar 

  23. Schafers RF, Poller U, Ponicke K, Geissler M, Daul AE, Michel MC, Brodde OE (1997) Influence of adrenoceptor and muscarinic receptor blockade on the cardiovascular effects of exogenous noradrenaline and of endogenous noradrenaline released by infused tyramine. Naunyn Schmiedebergs Arch Pharmacol 355(2):239–249

    Article  CAS  Google Scholar 

  24. Armenia A, Munavvar AS, Abdullah NA, Helmi A, Johns EJ (2004) The contribution of adrenoceptor subtype(s) in the renal vasculature of diabetic spontaneously hypertensive rats. Br J Pharmacol 142(4):719–726

    Article  CAS  Google Scholar 

  25. Tsujimoto G, Tsujimoto A, Suzuki E, Hashimoto K (1989) Glycogen phosphorylase activation by two different alpha 1-adrenergic receptor subtypes: methoxamine selectively stimulates a putative alpha 1-adrenergic receptor subtype (alpha 1a) that couples with Ca2 + influx. Mol Pharmacol 36(1):166–176

    CAS  Google Scholar 

  26. Arevalo-Leon LE, Gallardo-Ortiz IA, Urquiza-Marin H, Villalobos-Molina R (2003) Evidence for the role of alpha1D- and alpha1A-adrenoceptors in contraction of the rat mesenteric artery. Vascul Pharmacol 40(2):91–96

    Article  CAS  Google Scholar 

  27. Nunes JP, Guimaraes S (1993) Chloroethylclonidine irreversibly activates postjunctional alpha 2-adrenoceptors in the dog saphenous vein. Naunyn Schmiedebergs Arch Pharmacol 348(3):264–268

    Article  CAS  Google Scholar 

  28. Michel MC, Kerker J, Branchek TA, Forray C (1993) Selective irreversible binding of chloroethylclonidine at alpha 1- and alpha 2-adrenoceptor subtypes. Mol Pharmacol 44(6):1165–1170

    CAS  Google Scholar 

  29. Tran LT, Yuen VG, McNeill JH (2009) The fructose-fed rat: a review on the mechanisms of fructose-induced insulin resistance and hypertension. Mol Cell Biochem 332(1–2):145–159

    Article  CAS  Google Scholar 

  30. Bunnag P, Hori MT, Ormsby B, Berger ME, Golub MS, Tuck ML (1997) Impaired in vivo adrenergic responses in diet-induced hypertensive rats. Hypertens Res 20(1):17–21

    Article  CAS  Google Scholar 

  31. Kamide K, Rakugi H, Higaki J, Okamura A, Nagai M, Moriguchi K, Ohishi M, Satoh N, Tuck ML, Ogihara T (2002) The renin-angiotensin and adrenergic nervous system in cardiac hypertrophy in fructose-fed rats. Am J Hypertens 15(1 Pt 1):66–71

    Article  CAS  Google Scholar 

  32. Sun CL, Hanig JP (1983) Vascular reactivity to adrenergic agents and neuronal and vascular catecholamine levels in spontaneously hypertensive rats. Pharmacology 27(6):319–324

    Article  CAS  Google Scholar 

  33. Hogikyan RV, Supiano MA (1994) Arterial alpha-adrenergic responsiveness is decreased and SNS activity is increased in older humans. Am J Physiol 266(5 Pt 1):E717–E724

    CAS  Google Scholar 

  34. Iyer SN, Raizada MK, Katovich MJ (1996) AT1 receptor density changes during development of hypertension in hyperinsulinemic rats. Clin Exp Hypertens 18(6):793–810

    Article  CAS  Google Scholar 

  35. Nyby MD, Abedi K, Smutko V, Eslami P, Tuck ML (2007) Vascular Angiotensin type 1 receptor expression is associated with vascular dysfunction, oxidative stress and inflammation in fructose-fed rats. Hypertens Res 30(5):451–457

    Article  CAS  Google Scholar 

  36. Iyer SN, Katovich MJ (1996) Vascular reactivity to phenylephrine and angiotensin II in hypertensive rats associated with insulin resistance. Clin Exp Hypertens 18(2):227–242

    Article  CAS  Google Scholar 

  37. Jerez S, Peral de Bruno M, Coviello A (2004) Cross talk between angiotensin II and alpha 1 adrenergic receptors in rabbit aorta: role of endothelium. J Cardiovasc Pharmacol 43(3):402–409

    Article  CAS  Google Scholar 

  38. Abdulla MH, Sattar MA, Abdullah NA, Hazim AI, Anand Swarup KR, Rathore HA, Khan MA, Johns EJ (2008) Inhibition of Ang II and renal sympathetic nerve influence dopamine-and isoprenaline-induced renal haemodynamic changes in normal Wistar-Kyoto and spontaneously hypertensive rats. Auton Autacoid Pharmacol 28(4):95–101

    Article  CAS  Google Scholar 

  39. Chen K, Zimmerman BG (1995) Angiotensin II-mediated renal vasoconstriction amenable to alpha 1-adrenoceptor blockade. Eur J Pharmacol 284(3):281–288

    Article  CAS  Google Scholar 

  40. Sumners C, Raizada MK (1993) Angiotensin II receptor subtypes in neuronal cells. In: Raizada MK, Phillips MI, Sumners C (eds) Cellular and molecular biology of the renin-angiotensin systemed. CRC, Boca Raton, FL, pp 379–411

    Google Scholar 

  41. Hu ZW, Shi XY, Okazaki M, Hoffman BB (1995) Angiotensin II induces transcription and expression of alpha 1-adrenergic receptors in vascular smooth muscle cells. Am J Physiol 268(3 Pt 2):H1006–H1014

    CAS  Google Scholar 

  42. Deng XF, Sculptoreanu A, Mulay S, Peri KG, Li JF, Zheng WH, Chemtob S, Varma DR (1998) Crosstalk between alpha-1A and alpha-1B adrenoceptors in neonatal rat myocardium: implications in cardiac hypertrophy. J Pharmacol Exp Ther 286(1):489–496

    CAS  Google Scholar 

  43. Kazi RN, Munavvar AS, Abdullah NA, Khan AH, Johns EJ (2009) Influence of high dietary sodium intake on the functional subtypes of alpha-adrenoceptors in the renal cortical vasculature of Wistar-Kyoto rats. Auton Autacoid Pharmacol 29(1–2):25–31

    Article  CAS  Google Scholar 

  44. Deng XF, Mulay S, Varma (1997) Role of Ca(2+)-independent PKC in alpha 1-adrenoceptor-mediated inotropic responses of neonatal rat hearts. Am J Physiol 273(3 Pt 2):H1113–H1118

    CAS  Google Scholar 

  45. Perez-Rivera AA, Fink GD, Galligan JJ (2005) Alpha-1B adrenoceptors mediate neurogenic constriction in mesenteric arteries of normotensive and DOCA-salt hypertensive mice. Auton Neurosci 121(1–2):64–73

    Article  CAS  Google Scholar 

  46. Abbas SA, Munavvar AS, Abdullah NA, Johns EJ (2006) Involvement of α1-adrenoceptor subtypes in the cardiac failure in Spontaneously Hypertensive rats. J Basic Appl Sci 2:59–69

    CAS  Google Scholar 

Download references

Acknowledgments

Mohammed H. Abdulla is a recipient of Vice Chancellor’s Award, USM fellowship from institute of graduate studies (IPS) of Universiti Sains Malaysia, Janssen Pharmaceuticals Award of best research thesis 2009 and the American Physiological Society Early Career Physiologist Award 2010, all gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed H. Abdulla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abdulla, M.H., Sattar, M.A., Abdullah, N.A. et al. The contribution of α1B-adrenoceptor subtype in the renal vasculature of fructose-fed Sprague–Dawley rats. Eur J Nutr 50, 251–260 (2011). https://doi.org/10.1007/s00394-010-0133-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-010-0133-8

Keywords

Navigation