Skip to main content

Advertisement

Log in

Effects of Mediterranean diets with low and high proportions of phytate-rich foods on the urinary phytate excretion

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Background

Important health benefits have been reported recently to phytate intake. This includes the prevention of pathological calcifications such as renal calculi, dental calculi and cardiovascular calcification, due its action as crystallization inhibitor of calcium salts, and as preventive of cancer.

Aim of study

The aim of this study was to establish a relation between the intake of phytate, through consumption of typical components of the Mediterranean diet (including nuts), and its excretion in urine.

Methods

This study recruited participants from subjects included in a larger trial (PREDIMED) of food habits, that were assigned to one of two diet groups: (1) the Mediterranean diet with low proportion of phytate-rich food group, where participants were asked to maintain their usual diet; and (2) the Mediterranean diet with high proportion of phytate-rich food group, where participants were asked to increase phytate-rich foods in their diet. Phytate intake was assessed on the basis of a food frequency questionnaire. Urinary phytate excretion was determined in 2-h urine samples.

Results

The overall phytate consumption of the Mediterranean diet with high proportion of phytate-rich food group (672 ± 50 mg) was significantly higher than the Mediterranean diet with low proportion of phytate-rich food group (422 ± 34 mg), representing a 59% difference. Urinary phytate excretion was also significantly higher (54%) in the Mediterranean diet with high proportion of phytate-rich food group (1,016 ± 70 μg/L) than the Mediterranean diet with low proportion of phytate-rich food group (659 ± 45 μg/L).

Conclusions

Mediterranean diets high in whole cereals, legumes and nuts compared to Mediterranean diets low in these phytate-rich foods increase the urinary phytate excretion in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Beauchamp GK, Keast RSJ, Morel D, Lin JM, Pika J, Han Q, Lee C, Smith AB, Breslin PAS (2005) Phytochemistry: ibuprofen-like activity in extra-virgin olive oil. Nature 437:45–46

    Article  CAS  Google Scholar 

  2. Brune M, Rossander L, Hallberg L (1989) Iron absorption—no intestinal adaptation to a high phytate diet. Am J Clin Nutr 49:542–545

    CAS  Google Scholar 

  3. Carnovale E, Lombardi-Boccia G, Lugaro E (1987) Phytate and zinc content of Italian diets. Hum Nutr Appl Nutr 41A:180–186

    CAS  Google Scholar 

  4. Chan SSL, Ferguson EL, Bailey K, Fahmida U, Harper TB, Gibson RS (2007) The concentrations of iron, calcium, zinc and phytate in cereals and legumes habitually consumed by infants living in East Lombok, Indonesia. J Food Comp Anal 20:609–617

    Article  CAS  Google Scholar 

  5. Cullumbine H, Basnayake V, Lemottee J, Wickramanayake TW (1950) Mineral metabolism on rice diets. Br J Nutr 4:101–111

    Article  CAS  Google Scholar 

  6. Davies NT, Warrington S (1986) The phytic acid mineral, trace-element, protein and moisture-content of UK Asian immigrant foods. Hum Nutr Appl Nutr 40A:49–59

    CAS  Google Scholar 

  7. Ellis R, Kelsay JL, Reynolds RD, Morris ER, Moser PB, Frazier CW (1987) Phytate: zinc and phytate × calcium: zinc millimolar ratios in self-selected diets of Americans, Asian Indians, and Nepalese. J Am Diet Assoc 87:1043–1047

    CAS  Google Scholar 

  8. Ellis R, Morris ER, Hill AD, Smith JC Jr, Harland BF (1997) Selected mineral intakes of adult African-Americans in the Washington, DC area. J Food Comp Anal 10:334–342

    Article  CAS  Google Scholar 

  9. Estruch R, Martinez-Gonzalez MA, Corella D, Salas-Salvado J, Ruiz-Gutiérrez V, Covas I, Fiol M, Gómez-Gracia E, López-Sabater MC, Vinyoles E, Arós F, Conde M, Lahoz C, Lapetra J, Sáez G, Ros E (2006) Effects of a Mediterranean-style diet on cardiovascular risk factors—a randomized trial. Ann Intern Med 145:1–11

    Google Scholar 

  10. Forbes RM, Parker HM, Erdman JW Jr (1984) Effects of dietary phytate, calcium and magnesium levels on zinc bioavailability to rats. J Nutr 114:1421–1425

    CAS  Google Scholar 

  11. Forbes RM, Weingartner KE, Parker HM, Bell RR, Erdman JW Jr (1979) Bioavailability to rats of zinc, magnesium and calcium in casein-, egg- and soy protein-containing diets. J Nutr 109:1652–1660

    CAS  Google Scholar 

  12. Graf E, Eaton JW (1990) Antioxidant functions of phytic acid. Free Radic Biol Med 8:61–69

    Article  CAS  Google Scholar 

  13. Grases F, Costa-Bauza A (1999) Phytate (IP6) is a powerful agent for preventing calcifications in biological fluids: usefulness in renal lithiasis treatment. Anticancer Res 19:3717–3722

    CAS  Google Scholar 

  14. Grases F, Ramis M, Costa-Bauza A (2000) Effects of phytate and pyrophosphate on brushite and hydroxyapatite crystallization—comparison with the action of other polyphosphates. Urol Res 28:136–140

    Article  CAS  Google Scholar 

  15. Grases F, Simonet BM, March JG, Prieto RM (2000) Inositol hexakisphosphate in urine: the relationship between oral intake and urinary excretion. BJU Int 85:138–142

    Article  CAS  Google Scholar 

  16. Grases F, Simonet BM, Prieto RM, March JG (2001) Dietary phytate and mineral bioavailability. J Trace Elem Med Biol 15:221–228

    Article  CAS  Google Scholar 

  17. Grases F, Simonet BM, Prieto RM, March JG (2001) Phytate levels in diverse rat tissues: influence of dietary phytate. Br J Nutr 86:225–231

    Article  CAS  Google Scholar 

  18. Grases F, Simonet BM, Vucenik I, Prieto RM, Costa-Bauza A, March JG et al (2001) Absorption and excretion of orally administered inositol hexaphosphate (IP6 or phytate) in humans. Biofactors 15:53–61

    Article  CAS  Google Scholar 

  19. Grases F, Perello J, Isern B, Prieto RM (2004) Determination of myo-inositol hexakisphosphate (phytate) in urine by inductively coupled plasma atomic emission spectrometry. Anal Chim Acta 510:41–43

    Article  CAS  Google Scholar 

  20. Grases F, Simonet BM, Perello J, Costa-Bauza A, Prieto RM (2004) Effect of phytate on element bioavailability in the second generation of rats. J Trace Elem Med Biol 17:229–234

    Article  CAS  Google Scholar 

  21. Grases F, Sanchis P, Perello J, Isern B, Prieto RM, Fernandez-Palomeque C, Fiol M, Bonnin O, Torres JJ (2006) Phytate (myo-inositol hexakisphosphate) inhibits cardiovascular calcifications in rats. Front Biosci 11:136–142

    Article  CAS  Google Scholar 

  22. Grases F, Isern B, Sanchis P, Perello J, Torres JJ, Costa-Bauza A (2007) Phytate acts as an inhibitor in formation of renal calculi. Front Biosci 12:2580–2587

    Article  CAS  Google Scholar 

  23. Grases F, Sanchis P, Costa-Bauza A, Bonnin O, Isern B, Perello J, Prieto RM (2008) Phytate inhibits bovine pericardium calcification in vitro. Cardiovasc Pathol 17:139–145

    Article  CAS  Google Scholar 

  24. Grases F, Sanchis P, Perello J, Isern B, Prieto RM, Fernandez-Palomeque C, Saus C (2008) Phytate reduces age-related cardiovascular calcification. Front Biosci 13:7115–7122

    Article  CAS  Google Scholar 

  25. Grases F, Perello J, Sanchis P, Isern B, Prieto RM, Costa-Bauza A, Santiago C, Ferragut ML, Frontera G (2009) Anticalculus effect of a triclosan mouthwash containing phytate: a double-blind, randomized, three-period crossover trial. J Periodontal Res 44:616–621

    Article  CAS  Google Scholar 

  26. Harland BF, Oberleas D (1987) Phytate in foods. World Rev Nutr Diet 52:235–259

    CAS  Google Scholar 

  27. Harland BF, Peterson M (1978) Nutritional status of lacto-ovo vegetarian Trappist monks. J Am Diet Assoc 72:259–264

    CAS  Google Scholar 

  28. Harland BF, Smikle-Williams S, Oberleas D (2004) High performance liquid chromatography analysis of phytate (IP6) in selected foods. J Food Comp Anal 17:227–233

    Article  CAS  Google Scholar 

  29. Heath ALM, Roe MA, Oyston SL, Fairweather-Tait SJ (2005) Meal-based intake assessment tool: relative validity when determining dietary intake of Fe and Zn and selected absorption modifiers in UK men. Br J Nutr 93:403–416

    Article  CAS  Google Scholar 

  30. Hepburn FN, Exler J, Weihrauch JL (1986) Provisional tables on the content of omega-3-fatty-acids and other fat components of selected foods. J Am Diet Assoc 86:788–793

    CAS  Google Scholar 

  31. Joung H, Nam G, Yoon S, Lee J, Shim JE, Paik HY (2004) Bioavailable zinc intake of Korean adults in relation to the phytate content of Korean foods. J Food Comp Anal 17:713–724

    Article  CAS  Google Scholar 

  32. Kim J, Paik HY, Joung H, Woodhouse LR, Li S, King JC (2004) Zinc supplementation reduces fractional zinc absorption in young and elderly Korean women. J Am Coll Nutr 23:309–315

    CAS  Google Scholar 

  33. Knoops KTB, de Groot LC, Kromhout D, Perrin AE, Moreiras-Varela O, Menotti A, van Staveren WA (2004) Mediterranean diet, lifestyle factors, and 10-year mortality in elderly European men and women—the HALE project. J Am Med Assoc 292:1433–1439

    Article  Google Scholar 

  34. Knoops KTB, de Groot LC, Fidanza F, Alberti-Fidanza A, Kromhout D, van Staveren WA (2006) Comparison of three different dietary scores in relation to 10-year mortality in elderly European subjects: the HALE project. Eur J Clin Nutr 60:746–755

    Article  CAS  Google Scholar 

  35. Kris-Etherton PM, Zhao GX, Binkoski AE, Coval SM, Etherton TD (2001) The effects of nuts on coronary heart disease risk. Nutr Rev 59:103–111

    Article  CAS  Google Scholar 

  36. Lau EM, Woo J (1998) Nutrition and osteoporosis. Curr Opin Rheumatol 10:368–372

    Article  CAS  Google Scholar 

  37. Maga JA (1982) Phytate: its chemistry, occurrence, food interactions, nutritional significance, and methods of analysis. J Agric Food Chem 30:1–9

    Article  CAS  Google Scholar 

  38. Martin-Moreno JM, Boyle P, Gorgojo L, Maisonneuve P, Fernandez-Rodriguez JC, Salvini S, Willett WC (1993) Development and validation of a food frequency questionnaire in Spain. Int J Epidemiol 22:512–519

    Article  CAS  Google Scholar 

  39. Mellamby E (1949) The rickets-producing and anti-calcifying action of phytate. J Physiol 109:488–533

    Google Scholar 

  40. Plaami S (1997) Myoinositol phosphates: analysis, content in foods and effects in nutrition. LWT Food Sci Technol 30:633–647

    CAS  Google Scholar 

  41. Reddy NR, Sathe SK, Salunkhe DK (1982) Phytates in legumes and cereals. Adv food res 28:1–92

    CAS  Google Scholar 

  42. Reddy NR (2002) Occurrence, distribution, content and dietary intake of phytate. In: Reddy NR, Sathe SK (eds) Food phytate. CRC Press, Boca Raton, pp 36–63

    Google Scholar 

  43. Schlemmer U, Frølich W, Prieto R, Grases F (2009) Phytates in foods—bioavailability and significance for humans. Mol Nutr Food Res 53:S330–S375

    Article  Google Scholar 

  44. Shamsuddin AM (2002) Anti-cancer function of phytic acid. Int J Food Sci Technol 37:769–782

    Article  CAS  Google Scholar 

  45. Torelm I, Bruce A (1982) Fytinsyra i livesmedel. Vår Föda 34:79–96

    CAS  Google Scholar 

  46. Trichopoulou A, Costacou T, Bamia C, Trichopoulos D (2003) Adherence to a Mediterranean diet and survival in a Greek population. New Engl J Med 348:2599–2608

    Article  Google Scholar 

  47. Visioli F, Galli C (2001) Antiatherogenic components of olive oil. Curr Atheroscler Rep 3:64–67

    Article  CAS  Google Scholar 

  48. Walker AR, Fox FW, Irving JT (1948) Studies in human mineral metabolism: 1. The effect of bread rich in phytate phosphorus on the metabolism of certain mineral salts with special reference to calcium. Biochem J 42:452–462

    CAS  Google Scholar 

  49. Wise A, Lockie GM, Liddell J (1987) Dietary intakes of phytate and its meal distribution pattern amongst staff and students in an institution of higher-education. Br J Nutr 58:337–346

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the participants for their collaboration, the PREDIMED personnel of the all primary care centers affiliated and specialty for M. Garcia-Valdueza, M. Moñino, M. Massot and A. Monsalvez. Financial support (project grant CTQ 2006-05640/BQU) by Dirección General de Investigación, Ministerio Español de Ciencia y Tecnologia, is gratefully recognized.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael M. Prieto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prieto, R.M., Fiol, M., Perello, J. et al. Effects of Mediterranean diets with low and high proportions of phytate-rich foods on the urinary phytate excretion. Eur J Nutr 49, 321–326 (2010). https://doi.org/10.1007/s00394-009-0087-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-009-0087-x

Keywords

Navigation