Skip to main content

Effect of beer consumption on levels of complex I and complex IV liver and heart mitochondrial enzymes and coenzymes Q9 and Q10 in adriamycin-treated rats



There is increasing evidence indicating that the dietary intake of food with high antioxidant capacity may protect mitochondria from damage and exert positive effects on different pathogenic processes.

Aim of the study

The present study was designed to evaluate the possible protective effect of alcohol-free beer intake on chain components dysfunction of liver and heart mitochondria, and to compare with the effect of alcohol beer intake.


The study was carried out in rat heart and liver mitochondria by inducing with Adriamycin the dysfunction of the respiratory chain. Heart and liver mitochondria were isolated from rats and subjected to oxidative stress with two doses of Adriamycin (5 mg/Kg) 7 days from the beginning of consumption of both alcohol-free and alcohol beer during 31 days. Complexes I and IV and the levels of coenzymes Q9 and Q10 were evaluated and compared with a control group.


Liver and heart mitochondria isolated from rats treated with Adryamicin showed a decrease in levels of complex I and complex IV enzymatic activity and in levels of coenzymes Q9 and Q10. Beer intake for itself does not affect any of the studied parameters. Therefore, the consumption of both alcohol and alcohol-free beer by rats treated with Adriamycin prevents the inhibition of enzymatic activities of complexes I and IV and the oxidation of coenzymes Q9 and Q10 in rat heart and liver mitochondria.


These results indicate that alcohol-free beer prevents adriamycin-induced damage to mitochondrial chain components and, therefore, helps to prevent mitochondrial dysfunction.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    Addolorato G, Leggio L, Ojetti V, Capristo E, Gasbarrini G, Gasbarrini A (2008) Effects of short-term moderate alcohol administration on oxidative stress and nutritional status in healthy males. Appetite 50(1):50–56

    Article  CAS  Google Scholar 

  2. 2.

    Bagchi D, Bagchi M, Hassoun EA, Kelly J, Stohs SJ (1995) Adriamycin-induced hepatic and myocardial lipid peroxidation and DNA damage an enhanced excretion of urinary lipid metabolites in rats. Toxicology 95:1–9

    Article  CAS  Google Scholar 

  3. 3.

    Barogi S, Baracca A, Cavazoni M, Castelli G, Lenaz G (2000) Effect of the oxidative stress induced by adriamycin on rat hepatocytes bioenergetics during ageing. Mech Ageing Dev 113:1–21

    Article  CAS  Google Scholar 

  4. 4.

    Bruckdorfer KR (2008) Antioxidants and CVD. Proc Nutr Soc 67(2):214–222

    Article  CAS  Google Scholar 

  5. 5.

    Crane FL (2001) Biochemical functions of coenzyme Q10. J Am Coll Nutr 20:591–598

    CAS  Google Scholar 

  6. 6.

    Davies KJ, Doroshow JH (1986) Redox cycling of anthracyclines by cardiac mitochondira I. Antracycline radical formation by NADH dehydrogenase. J Biol Chem 261:3060–3067

    CAS  Google Scholar 

  7. 7.

    Doroshow JH (1983) Antracycline antibiotic-stimulated superoxide, hydrogen peroxide, and hydroxyl radical production by NADH dehydrogenase. Cancer Res 43:4543–4551

    CAS  Google Scholar 

  8. 8.

    Du Y, Lou H (2008) Catechin and proanthocyanidin B4 from grape seeds prevent doxorubicin-induced toxicity in cardiomyocytes. Eur J Pharmacol 4; 591(1–3):96–101

    Google Scholar 

  9. 9.

    Genova ML, Pich MM, Biondi A, Bernachia A, Falasca A, Bovina C, Formigini G, Castelli G, Lenaz G (2003) Mitochondrial production of oxygen radical species and the role of Coenzyme Q as an antioxidant. Exp Biol Med 228(5):506–513

    CAS  Google Scholar 

  10. 10.

    Ghiselli A, Natella F, Guidi A, Montanari L, Fantozzi P, Scaccini C (2000) Beer increases plasma antioxidant capacity in humans. J Nutr Biochem 11:76–80

    Article  CAS  Google Scholar 

  11. 11.

    Guzy J, Kusnir J, Marekova M, Chavkova Z, Dubayova G, Mojzisova L, Mirossay J, Mojzis J (2003) Effect of quercetin on Daunorubicin-induced heart mitochondria change in rats. Physiol Res 52:573–780

    Google Scholar 

  12. 12.

    Huertas JR, Battino M, Lenaz G, Mataix FJ (1991) Changes in mitochondrial and microsomal rat liver coenzyme Q9 and Q10 conten induced by dietary fat and endogenous lipid peroxidation. FEBS 287:89–92

    Article  CAS  Google Scholar 

  13. 13.

    Kagan V, Serbinova E, Packer L (1990) Antioxidant effects of ubiquinones in microsomes and mitochondria are mediated by tocopherol recycling. Biochem Biophys Res Común 169:851–857

    Article  CAS  Google Scholar 

  14. 14.

    Lass A, Sohal RS (1999) Comparisons of coenzyme Q bound to mitochondrial membrane proteins among different mammalian species. Free Rad Biol Med 27(1–2):220–226

    Article  CAS  Google Scholar 

  15. 15.

    Lenaz G, Fato R, Formiggini G, Genova ML (2007) The role of Coenzyme Q in mitochondrial electron transport. Mitochondrion 7:S8–S33

    Article  CAS  Google Scholar 

  16. 16.

    Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    CAS  Google Scholar 

  17. 17.

    Martinez-Alvarez JR, Valls-Belles V, López-Jaén M, Villariño-Marín A, Codoñer-Franch P (2009) Effects of alcohol-free beer on lipid profile and parameters of oxidative stress and inflammation in elderly women. Nutrition 25(2):182–187

    Article  CAS  Google Scholar 

  18. 18.

    Ott M, Gogvadze V, Orrenius S, Zhivotovsky B (2007) Mitochondria, oxidative stress and cell death. Apoptosis 12(5):913–922

    Article  CAS  Google Scholar 

  19. 19.

    Psotova J, Clopeikova S, Miketova P, Simanek V (2004) Chemoprotective effect of plant phenolics against anthracycline-induced toxicity on rat cardiomyocytes. Phyto Res 18:516–521

    Article  CAS  Google Scholar 

  20. 20.

    Quiles JL, Huertas JR, Battino M, Mataix J, Ramirez-Tortosa MC (2002) Antioxidant nutrients and adriamycin toxicity. Toxicology 30–180(1):79–95

    Article  Google Scholar 

  21. 21.

    Quiles JL, Ochoa JJ, Battino M, Gutierrez-Rios P, Nepomuceno EA, Frías ML, Huertas JR, Mataix J (2005) Life-long supplementation with a low dosage of coenzyme Q10 in the rat: effects on antioxidant status and DNA damage. Biofactors 25(1–4):73–86

    Article  CAS  Google Scholar 

  22. 22.

    Rice-Evans C (2001) Flavonoids antioxidants. Curr Med Chem 8:797–807

    CAS  Google Scholar 

  23. 23.

    Rivero D, Perez-Magarino S, Gonzalez-Sanjosé ML, Valls-Belles V, Codoñer P, Muniz P (2005) Inhibition of induced DNA oxidative damage by beers: correlation with the content of polyphenols and melanoidins. J Agric Food Chem 53(9):3637–3642

    Article  CAS  Google Scholar 

  24. 24.

    Santos DL, Moreno AJM, Leino RL, Frobeg MK, Guayanes KB (2002) Carvedilol protects against doxorubicin-induced mitochondrial cardiomyopathy. Toxicol Applied Pharmacol 185:218–227

    Article  CAS  Google Scholar 

  25. 25.

    Sharma G, Tyagi A, Singh RP, Chan DCF, Agarwal R (2004) Synergistic anticancer effects of grape seed extract and conventional cytotoxic agent doxorobucin against human breast carcinoma cells. Breast Cancer Res Treat 85:1–12

    Article  CAS  Google Scholar 

  26. 26.

    Shigenaga MK, Hage TM, Ames BN (1994) Oxidative damage and mitochondrial decay in aging. Proc Natl Acad Sci USA 91:10771–10778

    Article  CAS  Google Scholar 

  27. 27.

    Sokolove PM (1988) Mitochondrial sulfhydryl group modification by adriamycin aglycones 1988. FEBS Lett 234:199–202

    Article  CAS  Google Scholar 

  28. 28.

    Solem LE, Wallace KB (1993) Selective activation of the sodium independent, cyclosporin A-sensitive calcium pore of cardiac mitochondria by doxorubicin. Toxicol Appl Pharmacol l121:50–57

    Article  Google Scholar 

  29. 29.

    Takada M, Ikenoya S, Yuzuriha T, Katayama K (1984) Simultaneous determination of reduced and oxidized ubiquinones. Methods Enzymol 105:147–155

    Article  CAS  Google Scholar 

  30. 30.

    Tang PH, Miles MV, Miles L, Quinlan J, Wong B, Wenisch A, Bove K (2004) Measurement of reduced and oxidized coenzyme Q9 and coenzyme Q10 levels in mouse tissues by HPLC with coulometric detection. Clin Chim Acta 341(1–2):173–184

    Article  CAS  Google Scholar 

  31. 31.

    Valls-Belles V, Castellucio C, Fato R, Genova ML, Bovina C, Sáez G, Marchetti M, Parenti-Castelli G, Lenaz G (1994) Protective effect of exogenous coenzyme Q against damage in rat liver. Biochem Mol Biol Inter 33(4):633–642

    Google Scholar 

  32. 32.

    Valls-Belles V, Torres MC, Boix L, Muñiz P, González-SanJose ML, Codoñer-Franch P (2008) Tocopherol, MDA–HNE and 8-OHdG levels in liver and heart mitochondria of adriamycin-treated rats fed with alcohol-free beer. Toxicology 249:97–101

    Article  CAS  Google Scholar 

  33. 33.

    Valls-Belles V, Torres MC, Muñiz P, Beltran S, Martinez-Alvarez JR, Codoñer-Franch P (2006) Defatted milled graped seed protects adriamycin-treated hepatocytes. Eur J Nutr 45(5):251–258

    Article  Google Scholar 

  34. 34.

    Vinson JA, Mandarano M, Hirst M, Trevithick JR, Bose P (2003) Phenol antioxidant quantity and quality in foods: beers and the effect of two types of beer on animal model of atherosclerosis. J Agric Food Chem 51:5528–5533

    Article  CAS  Google Scholar 

  35. 35.

    Wallace RB (2008) Mitochondrial off targets of drug therapy. Pharmacol Toxicol 29(7):361–366

    CAS  Google Scholar 

Download references


The authors wish to express their gratitude to the information centre “Centro de Información Cerveza y Salud” for their financial support.

Author information



Corresponding author

Correspondence to Victoria Valls-Belles.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Valls-Belles, V., Torres, C., Muñiz, P. et al. Effect of beer consumption on levels of complex I and complex IV liver and heart mitochondrial enzymes and coenzymes Q9 and Q10 in adriamycin-treated rats. Eur J Nutr 49, 181–187 (2010).

Download citation


  • Alcohol-free beer
  • Adriamycin
  • Mitochondrial enzymes
  • Coenzymes Q