Skip to main content
Log in

Mitochondrial DNA deletions of blood lymphocytes as genetic markers of low folate-related mitochondrial genotoxicity in peripheral tissues

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Background

A low folate status and mitochondrial DNA (mtDNA) mutations are risk factors for various cancers and degenerative diseases. It is not known if lymphocytic mtDNA deletions can be used as genetic “markers” to reflect global mtDNA damage during folate deficiency.

Aim of the study

The aim of this study was to characterize folate-related mtDNA deletions in lymphocytes and their associations with mt genotoxicity in peripheral tissues.

Methods

Weaning Wistar rats were fed folate-deficient and folate-replete (control) diets for 2 and 4 weeks. Folate levels of blood lymphocytes and various tissues were assayed by the Lactobacillus casei method. mtDNA deletions were measured by a real-time polymerase chain reaction analysis of whole DNA extracts.

Results

Compared to the control counterparts, mtDNA deletions of lymphocytes increased by 3.5-fold (P < 0.05) after 4 weeks of folate deficiency. Lymphocytic mtDNA deletions were inversely associated with plasma (r = −0.619, P = 0.018), red blood cell (r = −0.668, P = 0.009), and lymphocytic folate levels (r = −0.536, P = 0.048). Frequencies of lymphatic mtDNA deletions were positively correlated with mtDNA deletions in tissues including the lungs (r = 0.803, P = 0.0005), muscles (r = 0.755, P = 0.001), heart (r = 0.633, P = 0.015), liver (r = 0.722, P = 0.003), kidneys (r = 0.737, P = 0.006), pancreas (r = 0.666, P = 0.009), and brain (r = 0.917, P < 0.0001). Conclusions: Our data demonstrate that accumulated mtDNA deletions of lymphocytes depended upon dietary folate deprivation. The accumulated mt deletions in lymphocytes closely reflected the mt genotoxicity in the peripheral tissues during folate deficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

FD:

Folate-deficient

mt:

Mitochondrial

mtDNA4834 deletion:

4,834-bp large deletion in mtDNA

ROS:

Reactive oxygen species

RE:

Relative expression

References

  1. Biagini G, Pallotti F, Carraro S, Sgarbi G, Pich MM, Lenaz G, Anzivino F, Gualandi G, Xin D (1998) Mitochondrial DNA in platelets from aged subjects. Mech Ageing Dev 101:254–269

    Article  Google Scholar 

  2. Branda RF, Brooks EM, Chen Z, Naud SJ, Nicklas JA (2002) Dietary modulation of mitochondrial DNA deletions and copy number after chemotherapy in rats. Mutat Res 501:29–36

    CAS  Google Scholar 

  3. Chang CM, Yu CC, Lu HT, Chou YF, Huang RFS (2007) Folate deprivation promotes mitochondrial oxidative decay: DNA large deletions, cytochrome c oxidase dysfunction, membrane depolarization. Br J Nutr 97:855–863

    Article  CAS  Google Scholar 

  4. Choi SW, Mason JB (2000) Folate and carcinogenesis: an integrated scheme. J Nutr 130:129–135

    CAS  Google Scholar 

  5. Chou YF, Yu CC, Huang RFS (2007) Changes in mitochondrial (mt) DNA deletion, content and biogenesis in folate-deficient tissues of young rats depend on mt folate and oxidative DNA injuries. J Nutr 100:596–602

    Google Scholar 

  6. Corral-Debrinski M, Horton T, Lott MT, Shoffner JM, Beal MF, Wallace DC (1992) Mitochondrial DNA deletions in human brain: regional variability and increase with advanced age. Nat Genet 2:324–398

    Article  CAS  Google Scholar 

  7. Cortopassi GA, Shibata DD, Soong NW, Arnheim N (1992) A pattern of accumulation of a somatic deletion of mitochondrial DNA in aging human tissues. Proc Natl Acad Sci USA 89:7370–7374

    Article  CAS  Google Scholar 

  8. Crott JW, Choi SW, Branda RF, Mason JB (2002) Accumulation of mitochondrial DNA deletions is age, tissue and folate-dependent in rats. Mutat Res 570:63–70

    Google Scholar 

  9. Doria G, Frasca D (2001) Age-related changes of DNA damage and repair capacity in cells of the immune system. Mech Ageing Dev 122:985–998

    Article  CAS  Google Scholar 

  10. Duthie SJ, Grant G, Narayanan S (2001) Increased uracil misincorporation in lymphocytes from folate-deficient rats. Br J Cancer 83:1532–1537

    Article  Google Scholar 

  11. Fenech M (2001) The role of folic acid and vitamin B12 in genomic stability of human cells. Mutat Res 475:51–67

    Google Scholar 

  12. Fliss MS, Usadel H, Caballero OL, Wu L, Buta MR, Eleff SM, Jen J, Sidransky D (2000) Facile detection of mitochondrial DNA mutations in tumors and bodily fluids. Science 287:2017–2019

    Article  CAS  Google Scholar 

  13. Holt IJ, Harding AE, Morgan-Hughes JA (1998) Deletions of muscle mitochondrial DNA in patients with mitochondrial myopathies. Nature 331:717–719

    Article  Google Scholar 

  14. Horne DW, Patterson D (1988) Lactobacillus casei microbiological assay of folic acid derivatives in 96-well microtiter plates. Clin Chem 34:2357–2359

    CAS  Google Scholar 

  15. Huang RFS, Hsu YC, Lin HL, Yang FL (2001) Folate depletion and elevated plasma homocysteine promote oxidative stress in rat livers. J Nutr 131:33–38

    CAS  Google Scholar 

  16. Hultenby K, Rustin P, Gustafsson CM, Larsson NG (2004) Mitochondrial transcription factor A regulates mtDNA copy number in mammals. Hum Mol Genet 13:935–944

    Article  CAS  Google Scholar 

  17. Jeronimo C, Nomoto S, Caballero OL, Usadel H, Henrique R, Varzim G, Oliveira J, Lopes C, Fliss M, Sidransky D (2001) Mitochondrial mutations in early stage prostate cancer and bodily fluids. Oncogene 20:5195–5198

    Article  CAS  Google Scholar 

  18. Kim UK, Kim HS, Oh BH, Lee MM, Kim SH, Chae JJ, Choi HS, Choe SC, Lee CC, Park YB (2000) Analysis of mitochondrial DNA deletions in four chambers of failing human heart: hemodynamic stress, age, and disease are important factors. Basic Res Cardiol 95:163–171

    Article  CAS  Google Scholar 

  19. Kopxidas G, Kovalenko SA, Heffernan DR, Yarovaya N, Kramarova L, Stojanoveki D, Borg J, Islam MM, Caragounis A, Linnane AW (2000) Tissue mitochondrial DNA changes. Ann NY Acad Sci 908:226–243

    Article  Google Scholar 

  20. Kuo CS, Lin CY, Wu MY, Lu CL, Huang RF (2008) Relationship between folate status and tumour progression in patients with hepatocellular carcinoma. Br J Nutr 100:596–602

    Article  CAS  Google Scholar 

  21. Lee HC, Pang CY, Hsu HS, Wei YH (1994) Differential accumulations of 4977 bp deletion in mitochondrial DNA of various tissues in human ageing. Biochim Biophys Acta 1226:37–43

    CAS  Google Scholar 

  22. Lestienne P, Ponsot G (1988) Kearns–Sayre syndrome with muscle mitochondrial deletion. Lancet 1:885

    Article  CAS  Google Scholar 

  23. Loscalzo J (1996) The oxidant stress of hyperhomocyst(e)inemia. J Clin Invest 98:5–7

    Article  CAS  Google Scholar 

  24. Luchsinger JA, Tang MX, Miller J, Green R, Mayeux R (2007) Relation of higher folate intake to lower risk of Alzheimer disease in the elderly. Arch Neurol 64:86–92

    Article  Google Scholar 

  25. Mandel HR, Szargel V, Labay O, Elpereg A, Saada A, Shalata Y, Anbinder D, Berkowich C, Barak HM (2001) The deoxyguanosine kinase gene is mutated in individuals with depleted hepatocellular mitochondrial DNA. Nat Genet 29:337

    Article  CAS  Google Scholar 

  26. Meissner C, Mohamed SA, Klueter H, Hamann K, von Wurmb N, Oehmichen M (2000) Quantification of mitochondrial DNA in human blood cells using an automated detection system. Forensic Sci Int 113:109–112

    Article  CAS  Google Scholar 

  27. Melberg A, Nennesmo I, Moslemi AR, Kollberg G, Luoma P, Suomalainen A, Holme E, Oldfors A (2005) Alzheimer pathology associated with POLG1 mutation, multiple mtDNA deletions, and APOE4/4: premature ageing or just coincidence? Acta Neuropathol 110:315–316

    Article  Google Scholar 

  28. Mohamed SA, Wesch D, Blumenthal A, Bruse P, Windler K, Ernst M, Kabelitz D, Oehmichen M, Meissner C (2004) Detection of the 4977 bp deletion of mitochondrial DNA in different human blood cells. Exp Gerontol 39:181–188

    Article  CAS  Google Scholar 

  29. Moraes CT, DiMauro S, Zeviani M, Lombes A, Shanske S, Miranda AF, Nakase H, Bonilla E, Werneck LC (1989) Mitochondrial DNA deletions in progressive external ophthalmoplegia and Kearns–Sayre syndrome. N Engl J Med 320:1293–1299

    CAS  Google Scholar 

  30. Raha S, Robinson BH (2000) Mitochondria, oxygen free radicals, disease and ageing. Trends Biochem Sci 25:502–583

    Article  CAS  Google Scholar 

  31. Rampersaud GC, Kauwell GP, Hutson AD, Cerda JJ, Bailey LB (2000) Genomic DNA methylation decreases in response to moderate folate depletion in elderly women. Am J Clin Nutr 72:998–1003

    CAS  Google Scholar 

  32. Ravagnan L, Roumier T, Kroemer G (2002) Mitochondria, the killer organelles and their weapons. J Cell Physiol 192:131–137

    Article  CAS  Google Scholar 

  33. Ross OA, Hyland P, Curran MD, McIlhatton BP, Wikby A, Johansson B, Tompa A, Rawelec G, Barnett CR, Middleton D, Barnett YA (2002) Mitochondrial DNA damage in lymphocytes: a role in immunosenescence? Exp Gerontol 37:329–340

    Article  CAS  Google Scholar 

  34. Varela-Moreiras G, Selhub J (1992) Long-term folate deficiency alters folate content and distribution differentially in rat tissues. J Nutr 122:986–991

    CAS  Google Scholar 

  35. Virbasius JV, Scarpulla RC (1994) Activation of the human mitochondrial transcription factor A gene by nuclear respiratory factors: a potential regulatory link between nuclear and mitochondrial gene expression in organelle biogenesis. Proc Natl Acad Sci USA 91:1309–1313

    Article  CAS  Google Scholar 

  36. Von Wurmb N, Oehmichen M, Meissner C (1998) Demonstration of the 4977 bp deletion in human mitochondrial DNA from intravital and postmortem blood. Mutat Res 422:247–254

    Google Scholar 

  37. Walzem RL, Clifford AJ (1988) Folate deficiency in rats fed diets containing free amino acid or intact proteins. J Nutr 118:1089–1096

    CAS  Google Scholar 

  38. Wang Y, Michikawa Y, Mallidis C, Bai Y, Woodhouse L, Yarasheski KE, Miller CA, Askanas V, Engel WK, Bhasin S, Attardi G (2007) Muscle-specific mutations accumulate with aging in critical human mtDNA control sites for replication. Proc Natl Acad Sci USA 98:4022–4027

    Article  Google Scholar 

  39. Wei YH (1992) Mitochondrial DNA alterations as ageing-associated molecular events. Mutat Res 275:145–155

    CAS  Google Scholar 

  40. Wei YH, Lee HC (2002) Oxidative stress, mitochondrial DNA mutation, and impairment of antioxidant enzymes in aging. Exp Biol Med (Maywood) 227:671–682

    CAS  Google Scholar 

  41. Wei YH (1998) Oxidative stress and mitochondrial DNA mutations in human aging. Proc Soc Exp Biol Med 217:53–63

    CAS  Google Scholar 

  42. Wei YH, Pang CY, Lee HC, Lu CY (1998) Roles of mitochondrial DNA mutation and oxidative damage in human aging. Curr Sci 74:887–893

    CAS  Google Scholar 

  43. Yin PH, Lee HC, Chau GY, Wu YT, Li SH, Liu WY, Wei YH, Liu TY, Chi CW (2004) Alteration of the copy number and deletion of mitochondrial DNA in human hepatocellular carcinoma. Br J Cancer 90:2390–2392

    CAS  Google Scholar 

Download references

Acknowledgments

The authors are deeply grateful to Prof. Y.-H. Wei of the Department of Biochemistry at National Yang-Ming University, Taipei, Taiwan for his kind support and invaluable advice on mtDNA mutations. This study was supported by a grant (NSC96-2320-B-002) from the National Science Council, Taiwan to R.F.S. Huang.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rwei-Fen S. Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chou, YF., Huang, RF.S. Mitochondrial DNA deletions of blood lymphocytes as genetic markers of low folate-related mitochondrial genotoxicity in peripheral tissues. Eur J Nutr 48, 429–436 (2009). https://doi.org/10.1007/s00394-009-0031-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-009-0031-0

Keywords

Navigation