Skip to main content
Log in

Probiotic properties of Lactobacillus rhamnosus and Lactobacillus paracasei isolated from human faeces

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Background

The possibility of using microbes to maintain health, and to prevent or treat disease is a topic as old as microbiology. The research of novel probiotic strains is important in order to satisfy the increasing request of the market and to obtain functional products in which the probiotic cultures are more active and with better probiotic characteristics than those already present on the market.

Aim of the study

In this study, the probiotic potential of Lactobacillus strains isolated from Italian elderly human faeces was investigated.

Methods

The Lactobacillus strains were identified and examined for resistance to gastric acidity and bile toxicity, adhesion to HT-29 cells, antimicrobial activities, antibiotic susceptibility and plasmid profile. Survival of the strains through human intestine was examined in a 3 months human feeding trial.

Results

Two strains, Lactobacillus rhamnosus IMC 501 and Lactobacillus paracasei IMC 502, tolerated well low pH and bile acids. In antimicrobial activity assays, both strains showed inhibitory properties towards selected potential harmful microorganisms, particularly against Candida albicans. The two selected strains expressed high in vitro adherence to HT-29 cells increasing this characteristic when they are used in combination and they were resistant to vamcomycin, colistin sulphate, gentamicin, oxolinic acid and kanamycin. Moreover, the two strains could be recovered from stools of volunteers after the feeding trials.

Conclusions

Lactobacillus rhamnosus IMC 501 and L. paracasei IMC 502 present favourable strain-specific properties for their utilisation as probiotics in functional foods and the high adhesion ability of the L. rhamnosus IMC 501 and L. paracasei IMC 502 used in combination, confirmed by both in vitro and in vivo study, indicate that the two bacterial strains could be used as health-promoting bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Adlerberth I, Ahrne S, Johansson ML, Molin G, Hanson LA, Wold AE (1996) A mannose specific adherence mechanism in Lactobacillus plantarum conferring binding to the human colonic cell line HT-29. Appl Environ Microbiol 62:2244–2251

    CAS  Google Scholar 

  2. Ahn C, Thompson DC, Duncan C, Stiles ME (1992) Mobilization and location of the genetic determinant of chloramphenicol resistance from Lactobacillus plantarum ca TC2R. Plasmid 27:263–264

    Article  Google Scholar 

  3. Alander M, Satokari R, Korpela R, Saxelin M, Vilpponen-Salmela T, Mattila-Sandholm T, von Wright A (1999) Persistence of colonization of human colonic mucosa by a probiotic strain, Lactobacillus rhamnosus GG, after oral consumption. Appl Environ Microbiol 65:351–354

    CAS  Google Scholar 

  4. Altschul SF, Boguski MS, Gish W, Wootton JC (1994) Issues in searching molecular sequence databases. Nat Genet 6(2):119–129

    Article  CAS  Google Scholar 

  5. Anderson DG, McKay LL (1983) Simple and rapid method for isolating large plasmid DNA from lactic streptococci. Appl Environ Microbiol 46:549–552

    CAS  Google Scholar 

  6. Annuk H, Shchepetova J, Kullisaar T, Songisepp E, Zilmer M, Mikelsaar M (2003) Characterization of intestinal lactobacilli as putative probiotic candidates. J Appl Microbiol 94:403–412

    Article  CAS  Google Scholar 

  7. Azuma Y, Sato M (2001) Lactobacillus casei increases the adhesion of Lactobacillus gasseri NY0509 to human intestinal Caco-2 cells. Biosci Biotechnol Biochem 65:2326–2329

    Article  CAS  Google Scholar 

  8. Bauer AW, Kirby WMM, Sherris JC, Turk M (1966) Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 45:493–496

    CAS  Google Scholar 

  9. Bernet-Carnard MF, Lievin V, Brassart D, Neeser JR, Servin AL, Hudault S (1997) The human L. acidophilus strain LA1 secretes a non bacteriocin anti-bacterial substance(s) active in vitro and in vivo. Appl Environ Microbiol 63:2747–2753

    Google Scholar 

  10. Bertazzoni Minelli E, Benini A, Marzotto M, Sbarbati A, Ruzzenente O, Ferrario R, Hendrinks H, Dellaglio F (2004) Assessment of novel probiotic Lactobacillus casei strains for the production of functional dairy foods. Int Dairy J 14:723–736

    Article  CAS  Google Scholar 

  11. Blum S, Reniero R (2000) Adhesion of selected Lactobacillus strains to enterocyte-like Caco-2 cells in vitro: a critical evaluation of reliability of in vitro adhesion assays. In: 4th work-shop, demonstration of nutritional functionality of probiotic foods. Rovaniemi, 25–28 February

  12. Chan RC, Reid G, Irvin RT, Bruce AW, Costerton JR (1985) Competitive exclusion of uropathogens from human uroepithelial cells by Lactobacillus whole cells and cell wall fragments. Infect Immun 47:84–89

    CAS  Google Scholar 

  13. Coconnier MH, Bernet MF, Kernéis S, Chauvière G, Fourniat J, Servin AL (1993) Inhibition of adhesion of enteroinvasive pathogens to human intestinal Caco-2 cells by Lactobacillus acidophilus strain LB decreases bacterial invasion. FEMS Microbiol Lett 110:299–305

    Article  CAS  Google Scholar 

  14. Collado MC, Meriluoto J, Salminen S (2007) Development of new probiotics by strain combinations: is it possible to improve the adhesion to intestinal mucus? J Dairy Sci 90:2710–2716

    Article  CAS  Google Scholar 

  15. Cummings JH, Antoine J-M, Azpiroz F, Bourdet-Sicard R, Brandtzaeg P, Calder PC, Gibson GR, Guarner F, Isolauri E, Pannemans D, Shortt C, Tuijtelaars S, Watzl B (2004) Passclaim—gut health and immunity. Eur J Nutr [Suppl 2] 43:II/118-II/173

  16. Fang W, Shi M, Huang L, Wang Y (1996) Antagonism of lactic acid bacteria towards Staphylococcus aureus and Escherichia coli on agar plates and in milk. Vet Res 27:3–12

    CAS  Google Scholar 

  17. FAO/WHO (2001) Evaluation of health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. Report of a joint FAO/WHO expert consultation, Cordoba

    Google Scholar 

  18. Fernández MF, Boris S, Barbés C (2003) Probiotic properties of human Lactobacillus strains to be used in the gastrointestinal tract. J Appl Microbiol 94:449–455

    Article  Google Scholar 

  19. Fons M, Hege T, Ladire M, Raibaud P, Ducluzeau R, Maguin E (1997) Isolation and characterization of a plasmid from Lactobacillus fermentum conferring erythromycin resistance. Plasmid 37:199–203

    Article  CAS  Google Scholar 

  20. Frere J (1994) Simple method for extracting plasmid DNA from lactic acid bacteria. Lett Appl Microbiol 18:227–229

    Article  CAS  Google Scholar 

  21. Grifoni A, Bazzicalupo M, Di Serio C, Fancelli S, Fani R (1995) Identification of Azospirillum strains by restriction fragment length polymorphism of the 16S rDNA and of the histidine operon. FEMS Microbiol Lett 127(1–2):85–91

    Article  CAS  Google Scholar 

  22. Hudault S, Lievin V, Bernet-Camard MF, Servin A (1997) Antagonistic activity exerted in vitro and in vivo by Lactobacillus casei (strain GG) against Salmonella typhimurium C5 infection. Appl Environ Microbiol 63:13–518

    Google Scholar 

  23. Isolauri E, Salminen S, Ouwehand AC (2004) Probiotics. Best Pract Res Clin Gastroenterol 18(2):299–314

    Article  Google Scholar 

  24. Jacobsen CN, Rosenfeldt Nielsen V, Hayford AE, Møller PL, Michaelsen KF, Pærregaard A, Sandstrom B, Tvede M, Jakobsen M (1999) Screening of probiotic activities of forty-seven strains of Lactobacillus spp. by in vitro techniques and evaluation of the colonization ability of five selected strains in humans. Appl Environ Microbiol 65:4949–4956

    CAS  Google Scholar 

  25. Kimura K, McCartney AL, McConnell MA, Tannock GW (1997) Analysis of fecal populations of bifidobacteria and lactobacilli and investigation of the immunological responses of their human hosts to the predominant strains. Appl Environ Microbiol 63(9):3394–3398

    CAS  Google Scholar 

  26. Klein G, Pack A, Bonaparte C, Reuter G (1998) Taxonomy and physiology of probiotic lactic acid bacteria. Int J Food Microbiol 41:103–105

    Article  CAS  Google Scholar 

  27. Klein G, Hallmann C, Casas IA, Abad J, Louwers J, Reuter G (2000) Exclusion of vanA, vanB and vanC type glycopeptide resistance in strains of Lactobacillus reuteri and Lactobacillus rhamnosus used as probiotics by polymerase chain reaction and hybridization methods. J Appl Microbiol 89:815–824

    Article  CAS  Google Scholar 

  28. Ljung A, Wadström T (2006) Lactic acid bacteria as probiotic. Curr Issues Intest Microbiol 7:73–90

    Google Scholar 

  29. McCartney AL, Wenzhi W, Tannock GW (1996) Molecular analysis of the composition of the bifidobacterial and lactobacillus microflora of humans. Appl Environ Microbiol 62(12):4608–4613

    CAS  Google Scholar 

  30. Mueller S, Saunier K, Hanisch C, Norin E, Alm L, Midtvedt T, Cresci A, Silvi S, Orpianesi C, Verdenelli MC, Clavel T, Koebnick C, Zunft HJ, Doré J, Blaut M (2006) Differences in fecal microbiota in different European study populations in relation to age, gender, and country: a cross-sectional study. Appl Environ Microbiol 72(2):1027–1033

    Article  CAS  Google Scholar 

  31. NCCLS Standard (1997) Methods for antimicrobial susceptibility testing for anaerobic bacteria. Approved Standard-Fourth edition document, vol. 11, no. 17

  32. Ouwehand AC, Isolauri E, Kirjavainen PV, Tölkkö S, Salminen SJ (2000) The mucus binding of Bifidobacterium lactis Bb12 is enhanced in the presence of Lactobacillus GG and Lact. delbrueckii subsp. bulgaricus. Lett Appl Microbiol 30:10–13

    Article  CAS  Google Scholar 

  33. Reid G, Bruce AW, McGroarty JA, Cheng KJ, Costerton JW (1990) Is there a role of lactobacilli in prevention of urogenital and intestinal infection? Clin Microbiol Rev 3:335–344

    CAS  Google Scholar 

  34. Rolfe RD (2000) The role of probiotic cultures in the control of gastrointestinal health. J Nutr 130:396S–402S

    CAS  Google Scholar 

  35. Rönkä E, Malinen E, Saarela M, Rinta-Koski M, Aarnikunnas J, Palva A (2003) Probiotic and milk technological properties of Lactobacillus brevis. Int J Food Microbiol 82:63–74

    Article  CAS  Google Scholar 

  36. Salminen S, von Wright A, Morelli L, Marteau P, Brassart D, Vos de WM, Fonde’n R, Saxelin M, Collins K, Mogensen G, Birkeland SE, Sandholm TM (1998) Demonstration of safety of probiotics—a review. Int J Food Microbiol 44:93–106

    Article  CAS  Google Scholar 

  37. Schiffrin EJ, Rochat F, Link-Amster H, Aeschlimann JM, Donnet-Hughes A (1995) Immunomodulation of human blood cells following the ingestion of lactic acid bacteria. J Dairy Sci 78:491–497

    Article  CAS  Google Scholar 

  38. Silvi S, Verdenelli MC, Orpianesi C, Cresci A (2003) EU project Crownalife: functional foods, gut microflora and healthy ageing. Isolation and identification of Lactobacillus and Bifidobacterium strains from faecal samples of elderly subjects for a possible probiotic use in functional foods. J Food Engin 56:195–200

    Article  Google Scholar 

  39. Tannock GW, Luchansky JB, Miller L, Connell H, Thode-Andersen S, Mercer AA, Klaenhammer TR (1994) Molecular characterization of a plasmid-borne (pGT633) erythromycin resistance determinant (ermGT) from Lactobacillus reuteri 100–63. Plasmid 31:60–71

    Article  CAS  Google Scholar 

  40. Tuomola (née Lehto) E, Salminen SJ (1998) Adhesion of some probiotic and dairy Lactobacillus strains to Caco-2 cell cultures. Int J Food Microbiol 41:45–51

    Article  Google Scholar 

  41. Walter J, Tannock GW, Tilsala-Timisjarvi A et al (2000) Detection and identification of gastrointestinal Lactobacillus species by using denaturing gradient gel electrophoresis and species-specific PCR primers. Appl Environ Microbiol 66(1):297–303

    Article  CAS  Google Scholar 

  42. Williams JGK, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1990) DNA polymorphism amplified by arbitrary primers are useful as genetic markers. Nucleic Acid Res 18: 6531-65-35

    Google Scholar 

  43. Woodford N, Johnson AP, Morrison D, Speller DCE (1995) Current perspective on glycopeptide resistance. Clin Microbiol Rev 8:585–615

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Cresci.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verdenelli, M.C., Ghelfi, F., Silvi, S. et al. Probiotic properties of Lactobacillus rhamnosus and Lactobacillus paracasei isolated from human faeces. Eur J Nutr 48, 355–363 (2009). https://doi.org/10.1007/s00394-009-0021-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-009-0021-2

Keywords

Navigation