Skip to main content

Dietary calcium and vitamin D2 supplementation with enhanced Lentinula edodes improves osteoporosis-like symptoms and induces duodenal and renal active calcium transport gene expression in mice

Abstract

The two main sources of vitamin D3 are de novo synthesis induced by exposure to ultraviolet (UV) light from the sun, and diet. Vitamin D3 deficiency causes rickets or osteoporosis. Oak mushrooms (Lentinula edodes) that are exposed to UV radiation contain enhanced vitamin D2 and have much higher calcium content than unmodified (non-irradiated) mushrooms. Such modified edible mushrooms have been proposed as a natural alternative source of dietary vitamin D. In the current study, we have examined whether modified oak mushrooms could improve or prevent osteoporosis-like symptoms in mice fed with low calcium and vitamin D3-deficient diet. Four-week-old male mice were fed low calcium, vitamin D3-deficient diets supplemented with 5, 10, or 20% unmodified, calcium-enhanced, or calcium plus vitamin D2-enhanced oak mushrooms for 4 weeks. To assess the effects of the supplemented diets, we evaluated femur density and length, bone histology, the expression of active calcium transport genes, and serum calcium levels. Mice fed with low calcium and vitamin D3-deficient diet developed osteoporosis-like symptoms within 4 weeks. Femur density and tibia thickness were significantly higher in mice fed calcium plus vitamin D2-enhanced mushrooms, and the expression of duodenal and renal calcium transport genes was significantly induced. These results indicate that in mice, vitamin D2 and/or calcium derived from irradiated oak mushrooms may improve bone mineralization through a direct effect on the bone, and by inducing the expression of calcium-absorbing genes in the duodenum and kidney.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    An BS, Choi KC, Kang SK, Lee GS, Hong EJ, Hwang WS, Jeung EB (2003) Mouse calbindin-D9k gene expression in the uterus during late pregnancy and lactation. Mol Cell Endocrinol 205:79–88

    Article  CAS  Google Scholar 

  2. 2.

    An BS, Kang SK, Shin JH, Jeung EB (2002) Stimulation of calbindin-D9k mRNA expression in the rat uterus by octyl-phenol, nonylphenol and bisphenol. Mol Cell Endocrinol 191:177–186

    Article  CAS  Google Scholar 

  3. 3.

    Association of Official Analytical Chemists (2000) Official method of analysis of AOAC intl., 17th edn. AOAC International, Maryland, pp 40–49

  4. 4.

    Armas LA, Hollis BW, Heaney RP (2004) Vitamin D2 is much less effective than vitamin D3 in humans. J Clin Endocrinol Metab 89:5387–5391

    Article  CAS  Google Scholar 

  5. 5.

    Choi KC, Leung PC, Jeung EB (2005) Biology and physiology of Calbindin-D9k in female reproductive tissues: involvement of steroids and endocrine disruptors. Reprod Biol Endocrinol 3:66

    Article  CAS  Google Scholar 

  6. 6.

    Christakos S, Gabrielides C, Rhoten WB (1989) Vitamin D-dependent calcium binding proteins: chemistry, distribution, functional considerations, and molecular biology. Endocr Rev 10:3–26

    Article  CAS  Google Scholar 

  7. 7.

    Darwish HM, DeLuca HF (1992) Identification of a 1, 25-dihydroxyvitamin D3-response element in the 5′-flanking region of the rat calbindin D-9k gene. Proc Natl Acad Sci USA 89:603–607

    Article  CAS  Google Scholar 

  8. 8.

    den Dekker E, Hoenderop JG, Nilius B, Bindels RJ (2003) The epithelial calcium channels, TRPV5 and TRPV6: from identification towards regulation. Cell Calcium 33:497–507

    Article  CAS  Google Scholar 

  9. 9.

    Diepens RJ, den Dekker E, Bens M, Weidema AF, Vandewalle A, Bindels RJ, Hoenderop JG (2004) Characterization of a murine renal distal convoluted tubule cell line for the study of transcellular calcium transport. Am J Physiol Renal Physiol 286:F483–F489

    Article  CAS  Google Scholar 

  10. 10.

    Hendy GN, Hruska KA, Mathew S, Goltzman D (2006) New insights into mineral and skeletal regulation by active forms of vitamin D. Kidney Int 69:218–223

    Article  CAS  Google Scholar 

  11. 11.

    Hoenderop JG, Nilius B, Bindels RJ (2003) Epithelial calcium channels: from identification to function and regulation. Pflugers Arch 446:304–308

    CAS  Google Scholar 

  12. 12.

    Hoenderop JG, van der Kemp AW, Hartog A, van de Graaf SF, van Os CH, Willems PH, Bindels RJ (1999) Molecular identification of the apical Ca2+ channel in 1, 25-dihydroxyvitamin D3-responsive epithelia. J Biol Chem 274:8375–8378

    Article  CAS  Google Scholar 

  13. 13.

    Hong EJ, Choi KC, Jeung EB (2004) Induction of calbindin-D9k messenger RNA and protein by maternal exposure to alkylphenols during late pregnancy in maternal and neonatal uteri of rats. Biol Reprod 71:669–675

    Article  CAS  Google Scholar 

  14. 14.

    Jasinghe VJ, Perera CO, Barlow PJ (2005) Bioavailability of vitamin D2 from irradiated mushrooms: an in vivo study. Br J Nutr 93:951–955

    Article  CAS  Google Scholar 

  15. 15.

    Kumar R, Wieben E, Beecher SJ (1989) The molecular cloning of the complementary deoxyribonucleic acid for bovine vitamin D-dependent calcium-binding protein: structure of the full-length protein and evidence for homologies with other calcium-binding proteins of the troponin-C superfamily of proteins. Mol Endocrinol 3:427–432

    Article  CAS  Google Scholar 

  16. 16.

    Lanske B, Razzaque MS (2007) Vitamin D and aging: old concepts and new insights. J Nutr Biochem 18(12):771–777

    Article  CAS  Google Scholar 

  17. 17.

    Lee GS, Choi KC, Jeung EB (2006) Glucocorticoids differentially regulate expression of duodenal and renal calbindin-D9k through glucocorticoid receptor-mediated pathway in mouse model. Am J Physiol Endocrinol Metab 290:E299–E307

    Article  CAS  Google Scholar 

  18. 18.

    Lee GS, Jeung EB (2007) Uterine TRPV6 expression during the estrous cycle and pregnancy in a mouse model. Am J Physiol Endocrinol Metab 293:E132–E138

    Article  CAS  Google Scholar 

  19. 19.

    Lee GS, Kim HJ, Jung YW, Choi KC, Jeung EB (2005) Estrogen receptor alpha pathway is involved in the regulation of Calbindin-D9k in the uterus of immature rats. Toxicol Sci 84:270–277

    Article  CAS  Google Scholar 

  20. 20.

    Lee GS, Lee KY, Choi KC, Ryu YH, Paik SG, Oh GT, Jeung EB (2007) A phenotype of a Calbindin-D9k gene-knockout is compensated for by the induction of other calcium-transporter genes in a mouse model. J Bone Miner Res 22(12):1968–1978

    Article  CAS  Google Scholar 

  21. 21.

    Lips P (2006) Vitamin D physiology. Prog Biophys Mol Biol 92:4–8

    Article  CAS  Google Scholar 

  22. 22.

    Mattila P, Suonpaa K, Piironen V (2000) Functional properties of edible mushrooms. Nutrition (Burbank, Los Angeles County Calif) 16:694–696

    CAS  Google Scholar 

  23. 23.

    Mattila PH, Piironen IV, Uusi-Rauva EJ, Koivistoinen PE (1994) Vitamin D contents in edible mushrooms. J Agric Food Chem 42:2449–2453

    Article  CAS  Google Scholar 

  24. 24.

    Nguyen TH, Lee GS, Ji YK, Choi KC, Lee CK, Jeung EB (2005) A calcium binding protein, calbindin-D9k, is mainly regulated by estrogen in the pituitary gland of rats during estrous cycle. Brain Res Mol Brain Res 141:166–173

    Article  CAS  Google Scholar 

  25. 25.

    Peng JB, Chen XZ, Berger UV, Vassilev PM, Brown EM, Hediger MA (2000) A rat kidney-specific calcium transporter in the distal nephron. J Biol Chem 275:28186–28194

    CAS  Google Scholar 

  26. 26.

    Pettifor JM, Marie PJ, Sly MR, du Bruyn DB, Ross F, Isdale JM, de Klerk WA, van der Walt WH (1984) The effect of differing dietary calcium and phosphorus contents on mineral metabolism and bone histomorphometry in young vitamin D-replete baboons. Calcif Tissue Int 36:668–676

    Article  CAS  Google Scholar 

  27. 27.

    Roberts JS, Teichert A, McHugh TH (2008) Vitamin D2 formation from post-harvest UV-B treatment of mushrooms (Agaricus bisporus) and retention during storage. J Agric Food Chem 56:4541–4544

    Article  CAS  Google Scholar 

  28. 28.

    Roche C, Bellaton C, Pansu D, Miller A 3rd, Bronner F (1986) Localization of vitamin D-dependent active Ca2+ transport in rat duodenum and relation to CaBP. Am J Physiol 251:G314–G320

    CAS  Google Scholar 

  29. 29.

    Song CZ, Tian X, Gelehrter TD (1999) Glucocorticoid receptor inhibits transforming growth factor-beta signaling by directly targeting the transcriptional activation function of Smad3. Proc Natl Acad Sci USA 96:11776–11781

    Article  CAS  Google Scholar 

  30. 30.

    Trang HM, Cole DE, Rubin LA, Pierratos A, Siu S, Vieth R (1998) Evidence that vitamin D3 increases serum 25-hydroxyvitamin D more efficiently than does vitamin D2. Am J Clin Nutr 68:854–858

    CAS  Google Scholar 

  31. 31.

    Van Cromphaut SJ, Rummens K, Stockmans I, Van Herck E, Dijcks FA, Ederveen AG, Carmeliet P, Verhaeghe J, Bouillon R, Carmeliet G (2003) Intestinal calcium transporter genes are upregulated by estrogens and the reproductive cycle through vitamin D receptor-independent mechanisms. J Bone Miner Res 18:1725–1736

    Article  Google Scholar 

  32. 32.

    van den Berg H (1997) Bioavailability of vitamin D. Eur J Clin Nutr 51(Suppl 1):S76–S79

    Google Scholar 

  33. 33.

    Walters JR, Howard A, Lowery LJ, Mawer EB, Legon S (1999) Expression of genes involved in calcium absorption in human duodenum. Eur J Clin Invest 29:214–219

    Article  CAS  Google Scholar 

  34. 34.

    Wasserman RH, Fullmer CS (1989) On the molecular mechanism of intestinal calcium transport. Adv Exp Med Biol 249:45–65

    CAS  Google Scholar 

  35. 35.

    Weber K, Erben RG, Rump A, Adamski J (2001) Gene structure and regulation of the murine epithelial calcium channels ECaC1 and 2. Biochem Biophys Res Commun 289:1287–1294

    Article  CAS  Google Scholar 

  36. 36.

    Wissenbach U, Niemeyer BA (2007) Trpv6. Handb Exp Pharmacol 179:221–234

    Article  CAS  Google Scholar 

  37. 37.

    Yun SM, Choi KC, Kim IH, An BS, Lee GS, Hong EJ, Oh GT, Jeung EB (2004) Dominant expression of porcine Calbindin-D9k in the uterus during a luteal phase. Mol Reprod Dev 67:251–256

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant (Code #20070401034011) from BioGreen 21 Program, Rural Development Administration and Ministry of Agriculture and Forestry.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Eui-Bae Jeung.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lee, GS., Byun, HS., Yoon, KH. et al. Dietary calcium and vitamin D2 supplementation with enhanced Lentinula edodes improves osteoporosis-like symptoms and induces duodenal and renal active calcium transport gene expression in mice. Eur J Nutr 48, 75 (2009). https://doi.org/10.1007/s00394-008-0763-2

Download citation

Keywords

  • L. edodes
  • active calcium transporting genes
  • osteoporosis
  • vitamin D2