Skip to main content
Log in

Organic potassium salts or fibers effects on mineral balance and digestive fermentations in rats adapted to an acidogenic diet

  • ORIGINAL CONTRIBUTION
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Summary

Background

Fibers and potassium (K) organic salts in plant foods are liable to affect Ca and Mg balance at digestive and renal levels, respectively. K organic salts could counteract the acidifying effects of western diets and consequences of excess NaCl.

Aim of the study

To study this question, male rats were adapted to a basal acidifying low-K (LK) diet, or to diets supplemented with a fiber mix (LK/F), or K citrate (HK) or both (HK/F).

Results

HK and HK/F diets displayed a marked alkalinizing effect in urine and promoted citraturia, but this effect was not modulated by fibers. The effect of fibers on Ca digestive absorption was more potent than K citrate effect on Ca renal excretion. In contrast, K citrate effect on kidney Mg excretion was more effective than that of fibers on Mg digestive absorption, a maximal effect on Mg balance was observed in rats fed the HK/F diet. Digestive fermentations in rats fed the LK/F diet were characterized by high-propionic acid fermentations and succinate accumulation. In rats adapted to the HK/F diet, K citrate supplementation depressed succinate and increased butyrate concentrations.

Conclusion

Organic anions arising from digestive fermentations seem to be not directly involved in the alkalinizing effects of plant foods. Fibers and organic K salts exert distinct effects on Ca and Mg metabolism, but with interesting interactions as to Mg balance, digestive fermentations and urine pH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

SCFA:

short-chain fatty acid

References

  1. Lock K, Pomerleau J, Causer L, Altmann DR, McKee M (2005) The global burden of disease attribuable to low consumption of fruit and vegetables: implications for the global strategy of diet. Bull World Health Organis 83:100–108

    Google Scholar 

  2. Alonso A, de la Fuenta C, Martin- Arnaud AM, de Irala J, Martinez JA, Martinez-Gonzalez MA (2004) Fruit and vegetable consumption is inversely associated with blood pressure in a Mediterranean population with a high vegetable-fat intake: the Seguimiento Universidad de Navarra (SUN) Study. Br J Nutr 92:311–319

    Article  CAS  Google Scholar 

  3. Meschi T, Maggiore M, Fiaccadori E, Schianchi T, Bosi S, Adorni G, Rodolo E, Guerra A, Allegri F, Novarini A, Borghis L (2004) The effect of fruits and vegetables on urinary stone risk factors. Kidney Int 66:2402–2410

    Article  CAS  Google Scholar 

  4. Young DB, Ma G (1999) Vascular protective effects of potassium. Semin Nephrol 19:477–486

    CAS  Google Scholar 

  5. Tucker KL, Hannan MT, Chen H, Cupples A, Wilson PWF, Kiel DP (1999) Potassium, magnesium, and fruit and vegetable intake are associated with greater bone mineral density in elderly men and women. Am J Clin Nutr 6:727–736

    Google Scholar 

  6. Sellmeyer DE, Stone KL, Sebastian A, Cummings SR (2001) A high ratio of dietary animal to vegetable protein increase the rate of bone loss and the risk of fracture in postmenopausal woman. Am J Clin Nutr 73:118–122

    CAS  Google Scholar 

  7. Cummings JH, Macfarlane GT (1997) Role of intestinal bacteria in nutrient metabolism. J Parenter Enteral Nutr 21:357–365

    CAS  Google Scholar 

  8. Rémésy C, Levrat M-A, Gamet L, Demigné C (1993) Cecal fermentations in rats fed oligosaccharides (inulin) are modulated by dietary calcium level. Am J Physiol 264:G855–G862

    Google Scholar 

  9. Aprikian O, Duclos V, Guyot S, Besson C, Manach C, Bernalier A, Morand C, Rémésy C, Demigné C (2003) Apple pectin and a polyphenol-rich apple concentrate are more effective together than separately on cecal fermentations and plasma lipids in rat. J Nutr 133:1860–1865

    CAS  Google Scholar 

  10. Younes H, Coudray C, Bellanger J, Demigne C, Rayssiguier Y, Rémésy C (2001) Effects of two fermentable carbohydrates (inulin and resistant starch) and their combination on calcium and magnesium balance in rats. Brit J Nutr 86:479–485

    CAS  Google Scholar 

  11. Coudray C, Feuillet-Coudray C, Tressol JC, Gueux E, Thien S, Jaffrelo L, Mazur A, Rayssiguier Y (2004) Stimulatory effect of inulin on intestinal absorption of calcium and magnesium in rats is modulated by dietary calcium intakes. Eur J Nutr 44:293–302

    Article  CAS  Google Scholar 

  12. Scharrer E, Lutz T (1990) Effects of short chain fatty acids and K on absorption of magnesium and other cations by the colon and caecum. Z Ernahrungswiss 29:162–168

    Article  CAS  Google Scholar 

  13. Trinidad PT , Wolever TMS, Thompson LU (1999) Effects of calcium concentration, acetate, and propionate on calcium absorption in the human distal colon. Nutrition 15:529–533

    Article  CAS  Google Scholar 

  14. Sellin JH (1999) SCFAs: the enigma of weak electrolyte transport in the colon. News Physiol Sci 14:58–64

    CAS  Google Scholar 

  15. Kunzelmann K, Mall M (2002) Electrolyte transport in the mammalian colon: mechanisms and implications for disease. Physiol Rev 82:245–289

    CAS  Google Scholar 

  16. Rémésy C, Demigné C, Aufrère J (1978) Inter-organ relationships between glucose, lactate and amino acids in rats fed on high-carbohydrate or high-protein diets. Biochem J 170:321–329

    Google Scholar 

  17. Sabboh H, Horcajada M-N, Coxam V, Tressol J-C, Besson C, Rémésy C, Demigné C (2005) Effect of potassium salts in rats adpated to an acidogenic high-sulfur amino acid diet. Br J Nutr 94:192–197

    Article  CAS  Google Scholar 

  18. Rémésy C, Demigné C (1974) Determination of volatile fatty acids in plasma after ethanolic extraction. Biochem J 141:85–91

    Google Scholar 

  19. Scholz-Ahrens KE, Schrezenmeir J (2002) Inulin, oligofructose and mineral metabolism – experimental data and mechanism. Br J Nutr 87:S179–S186

    Article  CAS  Google Scholar 

  20. Naaeder SB, Evans DF, Archampong EQ (1998) Effect of acute dietary supplementation on colonic pH in healthy volunteers. West Afr J Med 17:153–156

    CAS  Google Scholar 

  21. Demigné C, Sabboh H, Puel C, Rémésy C, Coxam V (2004) Organic anions and potassium salts in nutrition and metabolism. Nutr Res Rev 17:249–258

    Article  CAS  Google Scholar 

  22. Vidyasagar S, Barmeyer C, Geibel J, Binder HJ, Rajendran VM (2005) Role of short-chain fatty acids in colonic HCO3 secretion. Am J Physiol 288:G1217–G1226

    CAS  Google Scholar 

  23. Mortensen PB, Clausen MR (1996) Short-chain fatty acids in the human colon: relation to gastrointestinal health and disease. Scand J Gastroenterol 216:132–148

    CAS  Google Scholar 

  24. Welbourne TC, Joshi S (1990) Interorgan glutamine metabolism during acidosis. J Parenter Enteral Nutr 14:77S–85S

    Article  CAS  Google Scholar 

  25. Pajor AM (1999) Citrate transport by the kidney and intestine. Semin Nephrol 19:195–200

    CAS  Google Scholar 

  26. Epstein W (2003) The role and regulation of potassium in bacteria. Prog Nucleic Acid Res Mol Biol 75:293–320

    CAS  Google Scholar 

  27. Curthoys NP (2001) Role of mitochondrial glutaminase in rat renal glutamine metabolism. J Nutr 131:2491S–2495S

    CAS  Google Scholar 

  28. Greger JL (1999) Nondigestible carbohydrates and mineral bioavailability. J Nutr 129:1434S–1435S

    CAS  Google Scholar 

  29. Coudray C, Demigné C, Rayssiguier Y (2003) Effect of dietary fibers on magnesium absorption in animals and humans. J Nutr 233:1–4

    Google Scholar 

  30. Dai LJ, Friedman PA, Quamme GA (1997) Acid-base changes alter Mg2+ uptake in mouse distal convoluted tubule cells. Am J Physiol 272:F759–F766

    CAS  Google Scholar 

  31. Quamme GA (1997) Renal magnesium handling: new insights in understanding old problems. Kidney Int 52:1180–1195

    CAS  Google Scholar 

  32. Tosukhowong P, Borvonpadungkitti S, Prasongwatana V, Tungsanga K, Jutuporn S, Dissayabutr T, Reungjui S, Sriboonlue P, Tosukhowong P (2002) Urinary citrate excretion in patients with renal stone: roles of leucocytes ATP citrate lyase activity and potassium salts therapy. Clin Chim Acta 325:71–78

    Article  CAS  Google Scholar 

  33. Melnick JZ, Srere PA, Elshourbagy NA, Moe OW, Preisig PA, Alpern RJ (1996) Adenosine triphosphate citrate lyase mediates hypocitraturia in rats. J Clin Invest 98:2381–2387

    Article  CAS  Google Scholar 

  34. Hering-Smith KS, Gambala CT, Hamm LL (2002) Citrate and succinate transport in proximal tubule cells. Am J Physiol 278:F492–F498

    Google Scholar 

  35. Ritz E, Maluche HH, Krempien B, Mehls O (1981) Calcium metabolism in renal failure. In: Bronner F, Coburn JW (eds) Text-book of disorders of mineral metabolism, Vol. III, Academic Press, Inc. (London), pp 158–160

    Google Scholar 

  36. New SA (2003) Intake of fruits and vegetables: implications for bone health. Proc Nutr Soc 62:889–899

    Google Scholar 

Download references

Acknowledgement

Supported by a grant from the «Agence Pour la Recherche et l’Information en Fruits et Légumes frais» (APRIFEL, Paris, France).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Demigné.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sabboh, H., Besson, C., Tressol, JC. et al. Organic potassium salts or fibers effects on mineral balance and digestive fermentations in rats adapted to an acidogenic diet. Eur J Nutr 45, 342–348 (2006). https://doi.org/10.1007/s00394-006-0604-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-006-0604-0

Keywords

Navigation