European Journal of Nutrition

, Volume 43, Issue 6, pp 367–374 | Cite as

Lack of oxidative stress in a selenium deficient area in Ivory Coast

Potential nutritional antioxidant role of crude palm oil
  • G. Tiahou
  • B. Maire
  • A. Dupuy
  • M. Delage
  • M. H. Vernet
  • J. C. Mathieu-Daudé
  • F. Michel
  • E. D. Sess
  • J. P. CristolEmail author



Previous studies have described an important selenium deficiency in a mountain region (Glanle) in the west of Ivory Coast.

Aim of the study

To assess the antioxidant capacity of subjects from a selenium deficient area in Ivory Coast (Glanle region).


This study involved 57 subjects, 18 to 69 years old, living in the Glanle region and 56 healthy controls living in the southern coastal region (Bodou). In the Glanle region families consume basically a vegetarian and crude palm oil diet, whereas in the Bodou region, families eat a fish–based diet with principally refined palm oil. Fasting blood samples were collected to assess the following parameters: lipid status (plasma total lipids; total–, HDL and LDL–cholesterol; triglycerides; phospholipids; fatty acid composition), plasma protein status (total protein, albumin, transthyretin, orosomucoid, CRP, transferrin), antioxidant capacity (plasma selenium, uric acid, retinol, α–tocopherol and tocotrienols levels, plasma seleno–glutathione peroxidase (GSHPx) activity) and oxidative stress markers (malondialdehyde (MDA) and advanced oxidation protein products (AOPP)).


The mountain region samples (Glanle) were characterized by significantly lower plasma albumin, total–, HDL– and LDL–cholesterol, retinol and selenium levels, plasma PUFA content and GSHPx activity, but significantly higher alpha–tocopherol index and total tocotrienol level, than controls from the coastal area (Bodou). These results suggest a higher exposure risk to oxidative stress for the mountain region subjects. However, the absence of oxidative damage in this group provides evidence of a selenium independent protection mechanism against oxidative stress. This protection is related to lower plasma LDL cholesterol and PUFA content, and to higher α–tocopherol index, δ and total tocotrienols.


The long–term consumption of crude palm oil could be considered as an effective protective factor against oxidative stress.

Key words

oxidative stress selenium palm oil Ivory Coast 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Betteridge DJ (2000) What is oxidative stress? Metabolism 49:3–4Google Scholar
  2. 2.
    Nordberg J, Arner ESJ (2001) Reactive oxygen species, antioxidants, and the mammalian thyreodoxin system. Free Radic Biol Med 31(11):1287–1312PubMedGoogle Scholar
  3. 3.
    De Zwart LL, Meerman JHN, Commandeur JNM, Vermeulen NPE (1999) Biomarkers of free radical damage application in experimental animals and in humans. Free Radic Biol Med 26:202–226CrossRefPubMedGoogle Scholar
  4. 4.
    Rayman MP (2000) The importance of selenium to human health. The Lancet 356:233–241CrossRefGoogle Scholar
  5. 5.
    Navarro-Alarcon M, Lopez-Martinez MC (2000) essentiality of selenium in human body: relationship with different diseases. Sc Total Envir 249:347–371CrossRefGoogle Scholar
  6. 6.
    Romero CD, Blanco FL, Sanchez PH, Rodriguez H, Majem LS (2001) Serum selenium concentration in a representative sample of the Canarian population. Sc Total Envir 269:65–73CrossRefGoogle Scholar
  7. 7.
    Chen X, Jang G, Chen X, Wen Z, Ge K (1980) Studies on the relationship of selenium and Keshan disease. Biol Trace Elem Res 2:91–107Google Scholar
  8. 8.
    Moreno-Reyes R, Suetens C, Matthieu F. et al. (1998) Kashin-Beck osteoarthropathy in rural Tibet in relation with selenium and iodine status. N Engl J Med 339:1112–1120PubMedGoogle Scholar
  9. 9.
    Kouame P (2000) Approche épidémiologique et anthropologique d’une population exposée à la carence en iode: exemple de Glanle en Côte d’Ivoire. University Thesis, BordeauxGoogle Scholar
  10. 10.
    Arnaud J, Malvy D, Richard MJ, Faure H, Chaventre A (2001) Selenium status in a deficient population of the west Ivory Coast. J Physiol Anthropo 20(2):81–84Google Scholar
  11. 11.
    WHO (World Health organization) (1995) Physical status: the use and interpretation of anthropometry. Geneva: WHO Technical Report SeriesGoogle Scholar
  12. 12.
    Paglia DE, Valentine WN (1967) Studies on the quantitative and the qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med 70:158–169PubMedGoogle Scholar
  13. 13.
    Driskell WJ, Neese WJ, Bryant CC, Bashor MM (1982) Measurement of vitamin A and vitamin E in human serum by high-performance liquid chromatography. J Chromatography 231:439–444CrossRefGoogle Scholar
  14. 14.
    Nagaya T, Nakaya KI, Yoshida I, Okamoto Y (1998) Comparison of indices for serum vitamin E status in healthy subjects. Clin Chim Acta 276:103–108CrossRefPubMedGoogle Scholar
  15. 15.
    Tan B, Brzuskiewicz L (1989) Separation of tocopherol and tocotrienol isomers using normal- and reverse-phase liquid chromatography. Anal Biochem 180:368–373PubMedGoogle Scholar
  16. 16.
    Yagi K (1976) Simple fluorimetric essay for lipoperoxide in blood plasma. Biochem Med 15:212–216CrossRefPubMedGoogle Scholar
  17. 17.
    Witko-Sarsat V, Friedlande M, Capeillere-Blandin C, Nguyen-Koa T, Nguyen AT, Zingraff J, Jungers P, Descamps-Latsha B (1996) Advanced oxidation protein products as a novel marker of oxidative stress in uremia. Kidney Int 45:1304–1313Google Scholar
  18. 18.
    Babin F, Abderrazik M, Favier F, Cristol JP, Leger CL, Papoz L, Descomps B (1999) Differences between polyunsaturated fatty acid status of non-institutionalised elderly women and younger controls: a bioconversion defect can be suspected. Eur J Clin Nutr 53:591–596CrossRefPubMedGoogle Scholar
  19. 19.
    Folch J, Lees M, Sloane-Stanley GH (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509PubMedGoogle Scholar
  20. 20.
    Schemann J-F, Banou AA, Guindo A, Joret V, Traore L, Malvy D (2002) Prevalence of undernutrition and vitamin A deficiency in the Dogon region, Mali. J Am Coll Nutr 5:381–387Google Scholar
  21. 21.
    Tiahou G (1994) Evaluation du taux sérique de la lipoprotéine (a) chez l’ivoirien sain: dosage par immunonéphélémétrie. University Thesis, Abidjan. N° 1583Google Scholar
  22. 22.
    Famodu AA, Osilesi O, Makinde YO, Osunuga OA (1998) Blood pressure and blood lipid levels among vegetarian, semi-vegetarian, and non-vegetarian native Africans. Clin Biochem 31:545–549CrossRefPubMedGoogle Scholar
  23. 23.
    Bonnefoy M, Abidi H, Jauffret M, Garcia I, Surrace JP, Drai J (2002) Hypocholesterolemia in hospitalized elderly: relation with inflammation and nutritional status. Rev Med Int 23:991–998CrossRefGoogle Scholar
  24. 24.
    Feuillet F, Parra HJ, Kamian K, Bard JM, Fruchart JC, Vidailhet M (1993) Lipoprotein metabolism in marasmic children of Northern Mauritania. Am J Clin Nutr 58:484–448PubMedGoogle Scholar
  25. 25.
    Glueck CJ, Kelley W, Gupta A, Fontaine RN, Wang P, Gartside PS (1997) Prospective 10 years evaluation of hypocholesterolemia in cohort of 772 firefighters and cross-sectional evaluation of hypocholesterolemia in 1479 men in the national health and nutrition examination survey. I Metabolism 6:625–633CrossRefGoogle Scholar
  26. 26.
    Sambanthamurthi R, Sundram K, Tan YA (2000) Chemistry and biochemistry of palm oil. Progress in Lipid Res 39:507–558CrossRefGoogle Scholar
  27. 27.
    Grundy SM, Vega GL (1988) Plasma cholesterol responsiveness to saturated fatty acids. Am J Clin Nutr 47:822–844PubMedGoogle Scholar
  28. 28.
    Hayes KC, Khosla P (1992) Dietary fatty acid thresholds and cholesterolemia FASEB J 6:2600–2607Google Scholar
  29. 29.
    Qureshi AA, Burger WC, Peterson DM, Elson CE (1986) The structure of an inhibitor of cholesterol biosynthesis isolated from barley. J Biol Chem 261:10544–10550PubMedGoogle Scholar
  30. 30.
    Qureshi AA, Qureshi N, Wright JJK, et al. (1991a) Lowering of serum cholesterol in hypercholesterolemic humans by tocotrienols (palmvitee). Am J Clin Nutr 53:1021s–1026sGoogle Scholar
  31. 31.
    Qureshi AA, Qureshi N, Hasler-Rapacz JO, et al. (1991b) Dietary tocotrienols reduce concentration of plasma cholesterol, apolipoprotein B, thromboxane B2, and platelet factor 4 in pigs with inherited hyperlipidemias. Am J Clin Nutr 53:1042s–1046sGoogle Scholar
  32. 32.
    Theriault A, Chao JT, Wang Q, Gapor A, Adeli K (1999) Tocotrienol: a review of its therapeutic potential. Clin Biochem 32:309–319CrossRefPubMedGoogle Scholar
  33. 33.
    Ma J, Folsom AR, Shahar E, Eckteldt JH (1995) Plasma fatty acid composition as an indicator of habitual dietary intake in middle-aged adults. The atherosclerosis risk in communities (ARIC) study investigation. Am J Clin Nutr 62:564–571PubMedGoogle Scholar
  34. 34.
    Hasegawa T, Oshima M (1999): Serum fatty acid composition as a marker of eating habits in normal and diabetic subjects. Diabetes Res Clin Pract 46:115–120CrossRefPubMedGoogle Scholar
  35. 35.
    Pauletto P, Puato M, Angeli MT, Pessiana AC, et al. (1996) Blood pressure, serum lipids, and fatty acids in a lakefish diet or on a vegetarian diet in Tanzania. Lipids 31:309s–312sGoogle Scholar
  36. 36.
    Adams-Campbell LL, Nwankwo MU, Ukoli FA, Omene JA, Kuller LH (1992) Serum retinol, carotenoid, vitamin E, and cholesterol in Nigerian women. J Nut Biochem 3:58–61Google Scholar
  37. 37.
    Gouado I, Mbiappo TF, Moundipa FP, Teugwa M (1998) Vitamine A and E status of some rural populations in the north of Cameroon. Int J Vit Nutr 68:21–25Google Scholar
  38. 38.
    Traber MG, Lane JC, Lagmay NR, Kayden HJ (1992) Studies on the transfer of tocopherol between lipoproteins. Lipids 27:659–663Google Scholar
  39. 39.
    Hosomi A, Arita M, Sato Y, Kiyose C, Ueda T, Igarashi O, Arai H, Inoue K (1997) Affinity of alpha tocopherol transfer protein as a determinant of biological activities of vitamin E analogs. FEBS Lett 409:105–108CrossRefPubMedGoogle Scholar
  40. 40.
    Hayes KC, Pronczuk A, Liang JS (1993) Differences in the plasma transport and tissue concentrations of tocopherols and tocotrienols: observations in humans and hamsters. Proc Soc Exp Biol Med 202–203Google Scholar
  41. 41.
    Noguchi N, Hanyu R, Nonaka A, Okimoto Y, Kodama T (2003) Inhibition of THP-1 cell adhesion to endothelial cells by alpha tocopherol and alpha tocotrienol is dependent on intracellular concentration of the antioxidants. Free Rad Biol Med 35 (in press)Google Scholar
  42. 42.
    Gu L, Xu J, Zhou Y, Tian Y (1998) Protein status and antioxidant capability of residents in endemic and nonendemic areas of Keshan disease. Wei Sheng Yan Jiu 27(2):140–142PubMedGoogle Scholar
  43. 43.
    Wan NWM, Sakinah O, Gapor A, Khalid B (1996) Effects of palm olein tocopherol and tocotrienol on lipid peroxidation, lipid profiles and glycemic control in non-insulin diabetes mellitus patients. Nutr Res 16:1901–1911CrossRefGoogle Scholar
  44. 44.
    Kamat JP, Sarma HD, Devasagayan TP, Nesaretman K, Bsiron Y (1997) Tocotrienols from palm oil as effective inhibitors of protein oxidation and lipid peroxidation in rat liver microsomes. Mol Cell Biochem 170:131–137CrossRefPubMedGoogle Scholar

Copyright information

© Steinkopff Verlag 2004

Authors and Affiliations

  • G. Tiahou
    • 1
    • 4
  • B. Maire
    • 2
  • A. Dupuy
    • 1
  • M. Delage
    • 1
  • M. H. Vernet
    • 1
  • J. C. Mathieu-Daudé
    • 3
  • F. Michel
    • 1
  • E. D. Sess
    • 4
  • J. P. Cristol
    • 1
    Email author
  1. 1.Dept. of BiochemistryHospital LapeyronieMontpellier cédex 5France
  2. 2.UR106, IRDMontpellierFrance
  3. 3.Dept. of ToxicologyLapeyronie HospitalMontpellierFrance
  4. 4.Dept. of BiochemistryMedical Sciences University of AbidjanIvory Coast

Personalised recommendations