Skip to main content
Log in

Rye bran bread intake elevates urinary excretion of ferulic acid in humans, but does not affect the susceptibility of LDL to oxidation ex vivo

  • ORIGINAL CONTRIBUTION
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Summary

Background

Rye bread contributes an important part of the whole grain intake in the Scandinavian diet. Ferulic acid is the major phenolic compound in rye bran and is an antioxidant in vitro and may, therefore, contribute to cardioprotective effects of whole grain consumption.

Aim of the study

Firstly, to evaluate the bioavailability and potential antioxidative effects in humans of ferulic acid from rye. Secondly, to evaluate urine levels of ferulic acid as a possible biomarker of the ordinary dietary intake of ferulic acid.

Methods

We determined the urinary excretion of ferulic acid in 18 postmenopausal women after a dietary intake of rye bran or an inert wheat bran (control) in a crossover study (2 x 6 weeks with 4 weeks washout). The potential antioxidative effect of the rye bran intervention was investigated by measuring lowdensity lipoprotein (LDL) susceptibility to copper oxidation ex vivo. The subjects ingested rye bran enriched breads equivalent to ∼ 10.2 mg ferulic acid per day.

Results

The urinary excretion of ferulic acid averaged ∼ 4.8 mg per day during intervention with rye bran breads and ∼ 1.9 mg per day on the control breads (P = 0.002). Rye bran intervention had no influence on lag time or propagation rate of the LDL oxidation ex vivo.

Conclusions

The present study demonstrated that ferulic acid from rye bran is bioavailable and that the urinary concentration of ferulic acid reflects the dietary intake of this hydroxycinnamic acid. Within the period of intervention, the elevated ferulic acid did not produce a measurable antioxidative effect on the subjects’ LDL. It is suggested that the determination of ferulic acid in urine is a useful biomarker to assess the intake of ferulic acid from a regular diet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pietinen P, Rimm EB, Korhonen P, Hartman AM, Willett WC, Albanes D, Virtamo J (1996) Intake of dietary fiber and risk of coronary heart disease in a cohort of Finnish men. The Alpha- Tocopherol, Beta-Carotene Cancer Prevention Study. Circulation 94:2720–2727

    CAS  PubMed  Google Scholar 

  2. Jacobs DR Jr, Meyer KA, Kushi LH, Folsom AR (1998) Whole-grain intake may reduce the risk of ischemic heart disease death in postmenopausal women: the Iowa Women’s Health Study. Am J Clin Nutr 68(2):248–257

    CAS  PubMed  Google Scholar 

  3. Liu S, Stampfer MJ, Hu FB, Giovannucci E, Rimm E, Manson JE, Hennekens CH, Willett WC (1999) Whole-grain consumption and risk of coronary heart disease: results from the Nurses’Health Study. Am J Clin Nutr 70:412–419

    CAS  PubMed  Google Scholar 

  4. Slavin JL, Martini MC, Jacobs DR Jr, Marquart L (1999) Plausible mechanisms for the protectiveness of whole grains. Am J Clin Nutr 70(3 Suppl):459S–463S

    CAS  PubMed  Google Scholar 

  5. Danish Food Agency (1996) Dietary habits in Denmark, 1995. The Danish Food Agency, Publ. no. 235, Søborg, DK

  6. Andreasen MF, Landbo A, Christensen LP, Hansen Å, Meyer A (2001) Antioxidant effects of phenolic rye (Secale cereale L.) extracts, monomeric hydroxycinnamates, and ferulic acid dehydrodimers on human low-density lipoproteins. J Agric Food Chem 49(8):4090–4096

    Article  CAS  PubMed  Google Scholar 

  7. Andreasen MF, Christensen LP, Meyer AS, Hansen A (2000) Content of phenolic acids and ferulic acid dehydrodimers in 17 rye (Secale cereale L.) varieties. J Agric Food Chem 48(7): 2837–2842

    Article  CAS  PubMed  Google Scholar 

  8. Graf E (1992) Antioxidant potential of ferulic acid. Free Rad Biol Med 13(4):435–448

    Article  CAS  PubMed  Google Scholar 

  9. Nardini M, D’Aquino M, Tomassi G, Gentili V, Di Felice M, Scaccini C (1995) Inhibition of low-density lipoprotein oxidation by caffeic acid and other hydroxycinnamic acid derivatives. Free Rad Biol Med 19:541–552

    CAS  PubMed  Google Scholar 

  10. Ohta T, Nakano T, Egashira Y, Sanada H (1997) Antioxidant activity of ferulic acid beta-glucuronide in the LDL oxidation system. Biosci Biotechnol Biochem 61:1942–1943

    CAS  PubMed  Google Scholar 

  11. Natella F, Nardini M, Di Felice M, Scaccini C (1999) Benzoic and cinnamic acid derivatives as antioxidants: structure- activity relation. J Agric Food Chem 47(4):1453–1459

    CAS  PubMed  Google Scholar 

  12. Kikuzaki H, Hisamoto M, Hirose K, Akiyama K, Taniguchi H (2002) Antioxidant properties of ferulic acid and its related compounds. J Agric Food Chem 50:2161–2168

    Article  CAS  PubMed  Google Scholar 

  13. Dinis TC, Santosa CL, Almeida LM (2002) The apoprotein is the preferential target for peroxynitrite-induced LDL damage protection by dietary phenolic acids. Free Radic Res 36(5):531–543

    Article  CAS  PubMed  Google Scholar 

  14. Kroon PA, Faulds CB, Ryden P, Robertson JA,Williamson G (1997) Release of covalently bound ferulic acid from fiber in the human colon. J Agric Food Chem 45:661–667

    Article  CAS  Google Scholar 

  15. Andreasen MF, Kroon PA, Williamson G, Garcia-Conesa MT (2001) Esterase activity able to hydrolyze dietary antioxidant hydroxycinnamates is distributed along the intestine of mammals. J Agric Food Chem 49(11):5679–5684

    CAS  PubMed  Google Scholar 

  16. Cremin P, Kasim-Karakas S, Waterhouse AL (2001) LC/ES-MS detection of hydroxycinnamates in human plasma and urine. J Agric Food Chem 49(4):1747–1750

    Article  CAS  PubMed  Google Scholar 

  17. Bourne LC, Rice-Evans C (1998) Bioavailability of ferulic acid. Biochem Biophys Res Commun 253(2):222–227

    CAS  PubMed  Google Scholar 

  18. Bourne L, Paganga G, Baxter D, Hughes P, Rice-Evans C (2000) Absorption of ferulic acid from low-alcohol beer. Free Radic Res 32(3):273–280

    CAS  PubMed  Google Scholar 

  19. Kern SM, Bennett RN, Mellon FA, Kroon PA, Garcia-Conesa M-T (2003) Absorption of hydroxycinnamates in humans after high-bran cereal consumption. J Agric Food Chem 51:6050–6055

    Article  CAS  PubMed  Google Scholar 

  20. Azuma K, Ippoushi K, Nakayama M, Ito H, Higashio H, Terao J (2000) Absorption of chlorogenic acid and caffeic acid in rats after oral administration. J Agric Food Chem 48:5496–5500

    CAS  PubMed  Google Scholar 

  21. Andreasen MF, Christensen LP, Meyer AS, Hansen Å (1999) Release of hydroxycinnamic and hydroxybenzoic acids in rye by commercial plant cell wall degrading enzyme preparations. J Sci Food Agric 79:411–413

    CAS  Google Scholar 

  22. Lamuela-Raventòs RM, Waterhouse AL (1994) A direct HPLC separation of wine phenolics. AmJ Enol Vitic 45:1–5

    Google Scholar 

  23. Princen HMG, van Poppel G, Vogelezang C, Buytenhek R, Kok FJ (1992) Supplementation with vitamin E but not β-carotene in vivo protects lowdensity lipoprotein from lipid peroxidation in vitro. Arterioscler Thromb 12:554–562

    CAS  PubMed  Google Scholar 

  24. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  25. Scheek LM, Wiseman SA, Tijburg LB, van Tol A (1995) Dialysis of isolated low density lipoprotein induces a loss of lipophilic antioxidants and increases the susceptibility to oxidation in vitro. Atherosclerosis 117(1):139–144

    Article  CAS  PubMed  Google Scholar 

  26. Esterbauer H, Striegl G, Puhl H, Rotheneder M (1989) Continuous monitoring of in vitro oxidation of human low density lipoprotein. Free Radic Res Com 6:67–75

    CAS  PubMed  Google Scholar 

  27. Altman DG (1999) Practical statistics for medical research. Chapman & Hall/CRC: 467–471, London, p. 611

  28. Adam A, Crespy V, Levrat-Verny M, Leenhardt F, Leuillet M, Demigné C, Rémésy C (2002) The bioavailability of ferulic acid is governed primarily by the food matrix rather than its metabolism in intestine and liver in rats. J Nutr 132:1962–1968

    CAS  PubMed  Google Scholar 

  29. Choudhury R, Srai SK,Debnam E, Rice-Evans CA (1999) Urinary excretion of hydroxycinnamates and flavonoids after oral and intravenous administration. Free Rad Biol Med 27:278–286

    Article  CAS  PubMed  Google Scholar 

  30. Williamson G, Kroon PA, Faulds CB (1998) Hairy plant polysaccharides: a close shave with microbial esterases. Microbiol 144:2011–2023

    CAS  Google Scholar 

  31. Virgili F, Pagana G, Bourne L, Rimbach G, Natella F, Rice-Evans C, Packer L (2000) Ferulic acid excretion as a marker of consumption of a French maritime pine (Pinus Maritima) bark extract. Free Rad Biol Med 28(8):1429–1256

    Article  Google Scholar 

  32. Esterbauer H, Gebiki J, Puhl H, Jurgens G (1992) The role of lipid peroxidation and antioxidants in oxidative modification of LDL. Free Rad Biol Med 13:341–390

    Article  CAS  PubMed  Google Scholar 

  33. Anderson KJ, Teuber SS, Gobeille A, Cremin P, Waterhouse AL, Steinberg FM (2001) Walnut polyphenolics inhibit in vitro human plasma and LDL oxidation. J Nutr 131(11):2837–2842

    CAS  PubMed  Google Scholar 

  34. Zhu QY, Huang Y, Tsang D, Chen Z (1999) Regeneration of α-tocopherol in human low-density lipoprotein by green tea catechin. J Agric Food Chem 47:2020–2025

    Article  CAS  PubMed  Google Scholar 

  35. Laughton MJ, Evans PJ, Moroney NA, Hoult JRS, Halliwell B (1991) Inhibition of mammalian 5-lipoxygenase and cyclo- oxygenase by flavonoids and phenolic dietary additives. Relationship to antioxidant activity and to iron ionreducing ability. Biochem Pharmacol 42:1673–1681

    Article  CAS  PubMed  Google Scholar 

  36. Nogata Y, Yoza K, Kusumoto K, Kohyama N, Sekiya K, Ohta H (1996) Screening for inhibitory activity of citrus fruit extracts against platelet cyclooxygenase and lipoxygenase. J Agric Food Chem 44:725–729

    CAS  Google Scholar 

  37. Schubert SY, Lansky EP, Neeman I (1999) Antioxidant and eicosanoid enzyme inhibition properties of pomegranate seed oil and fermented juice flavonoids. J Etnopharmacol 66:11–17

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Meyer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harder, H., Tetens, I., Let, M.B. et al. Rye bran bread intake elevates urinary excretion of ferulic acid in humans, but does not affect the susceptibility of LDL to oxidation ex vivo . Eur J Nutr 43, 230–236 (2004). https://doi.org/10.1007/s00394-004-0463-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-004-0463-5

Key words

Navigation