Skip to main content

Advertisement

Log in

Assessment of interactions and dosage recommendations of synthetic DMARDs—Evidence-based and consensus-based recommendations based on a systematic literature search

Bewertung von Wechselwirkungen und Dosierungsempfehlungen von synthetischen DMARDs – Evidenz- und konsensbasierte Empfehlungen auf Basis einer systematischen Literatursuche

  • Empfehlungen und Stellungnahmen von Fachgesellschaften
  • Published:
Zeitschrift für Rheumatologie Aims and scope Submit manuscript

Abstract

Conventional synthetic (cs) and targeted synthetic (ts) disease-modifying antirheumatic drugs (DMARD) have potential interactions with a multitude of drugs. Furthermore, they sometimes have a lower therapeutic index, particularly in cases of limited organ functions. The aim of this work was to establish evidence-based recommendations on the therapeutic use of DMARDs in the context of drug interactions and dosage recommendations. A systematic literature search was carried out on the issue of drug interactions and dosages in cases of patients with limited kidney function and higher age and suffering from rheumatoid arthritis. A total of 2756 scientific publications were screened and 154 selected of which 68 were scrutinized in detail. Furthermore, the respective product information was also analyzed. A multitude of possible interactions of synthetic DMARDs with different drugs were detected, which were then assessed with respect to the clinical significance and consequences. A consensus process led to making recommendations with which the interactions were classified: A: dangerous combination, B: avoid combination (if possible, pausing DMARD treatment), C: possible combination requiring increased monitoring and potential adjustments in dosage and D: pharmacological interaction without relevance in DMARD standard doses. Apart from that dosage recommendations were established for each csDMARD and tsDMARD depending on kidney function and age. There are 3 primary recommendations and 11 core recommendations on interactions and dosages of csDMARDs and tsDMARDs meant as a practical help for therapeutic decision making and to improve safety in the treatment of rheumatoid arthritis.

Zusammenfassung

Konventionelle synthetische („conventional synthetic“ [cs]) und gezielte synthetische („targeted synthetic“ [ts]) DMARDs haben potenzielle Wechselwirkungen mit einer Vielzahl von Medikamenten. Darüber hinaus haben sie insbesondere bei eingeschränkten Organfunktionen teilweise eine geringe therapeutische Breite. Ziel der Arbeit war eine systematische Erarbeitung von evidenzbasierten Empfehlungen zur Therapie mit DMARDs im Kontext von Arzneimittelinteraktionen und Dosierungsempfehlungen. Es wurde eine systematische Literaturrecherche zur Frage nach Wechselwirkungen sowie Dosierungen bei eingeschränkter Nierenfunktion und höherem Lebensalter bei rheumatoider Arthritis durchgeführt. Insgesamt wurden 2756 wissenschaftliche Publikationen gescreent und 154 ausgewählt, wobei 68 Publikationen in eine detaillierte Analyse eingingen. Darüber hinaus wurden die Informationen der jeweiligen Fachinformationen analysiert. Es fand sich eine Vielzahl von möglichen Wechselwirkungen von synthetischen DMARDs mit verschiedenen Medikamenten, welche bezüglich klinischer Bedeutung und Konsequenz bewertet wurden. In einem Konsensprozess wurden Empfehlungen erarbeitet, wobei eine Graduierung der Wechselwirkungen erfolgte: A: gefährliche Kombination, B: Kombination meiden (wenn möglich DMARD-Pause), C: mögliche Kombination mit erhöhtem Überwachungsbedarf und evtl. Dosisanpassung, D: pharmakologische Interaktion ohne Relevanz in Standarddosierungen des DMARD. Es wurden darüber hinaus Dosierungsempfehlungen nach Nierenfunktion und Alter für jedes cs- und tsDMARD erarbeitet. Drei übergeordnete Empfehlungen und 11 Kernempfehlungen zu Wechselwirkungen und Dosierung von cs- und tsDMARDs sollen praktische Hilfestellung für therapeutische Entscheidungen geben und die Sicherheit der Therapie der rheumatoiden Arthritis verbessern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Filkova M, Carvalho J, Norton S et al (2017) Polypharmacy and unplanned hospitalizations in patients with rheumatoid arthritis. J Rheumatol 44:1786–1179

    Article  CAS  PubMed  Google Scholar 

  2. Fiehn C (2016) Pharmakologie von Methotrexat. In: Müller-Ladner U, Rau R (eds) Methotrexat bei Autoimmunerkrankungen – moderne Therapiekonzepte in der Rheumatologie, Dermatologie und Gastroenterologie, 1 edn. UNI-MED, Bremen, pp 23–29

    Google Scholar 

  3. Lim AY, Gaffney K, Scott DG (2005) Methotrexate-induced pancytopenia: serious and under-reported? Our experience of 25 cases in 5 years. Rheumatology 44(8):1051–1055

    Article  CAS  PubMed  Google Scholar 

  4. Bourré-Tessier J, Haraoui B (2010) Methotrexate drug interactions in the treatment of rheumatoid arthritis: a systematic review. J Rheumatol 37(7):1416–1421

    Article  PubMed  Google Scholar 

  5. Kwon OC, Lee JS, Kim YG et al (2018) Safety of the concomitant use of methotrexate and a prophylactic dose of trimethoprim-sulfamethoxazole. Clin Rheumatol 37(12):3215–3220

    Article  PubMed  Google Scholar 

  6. Svanström H, Lund M, Melbye M, Pasternak B (2018) Concomitant use of low-dose methotrexate and NSAIDs and the risk of serious adverse events among patients with rheumatoid arthritis. Pharmacoepidemiol Drug Saf 27(8):885–893

    Article  PubMed  Google Scholar 

  7. Ahern M, Booth J, Loxton A et al (1988) Methotrexate kinetics in rheumatoid arthritis: is there an interaction with nonsteroidal antiinflammatory drugs? J Rheumatol 15(9):1356–1360

    CAS  PubMed  Google Scholar 

  8. Schwartz JI, Agrawal NG, Wong PH et al (2009) Examination of the effect of increasing doses of etoricoxib on oral methotrexate pharmacokinetics in patients with rheumatoid arthritis. J Clin Pharmacol 49(10):1202–1209

    Article  CAS  PubMed  Google Scholar 

  9. Karim A, Tolbert DS, Hunt TL et al (1999) Celecoxib, a specific COX‑2 inhibitor, has no significant effect on methotrexate pharmacokinetics in patients with rheumatoid arthritis. J Rheumatol 12:2539–2543

    Google Scholar 

  10. Vanhoof J, Landewe S, Van Wijngaerden E et al (2003) High incidence of hepatotoxicity of isoniazid treatment for tuberculosis chemoprophylaxis in patients with rheumatoid arthritis treated with methotrexate or sulfasalazine and anti-tumour necrosis factor inhibitors. Ann Rheum Dis 62(12):1241–1242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bird P, Griffiths H, Tymms K et al (2013) The SMILE study—safety of methotrexate in combination with leflunomide in rheumatoid arthritis. J Rheumatol 40(3):228–235

    Article  CAS  PubMed  Google Scholar 

  12. Chan J, Sanders DC, Du L et al (2004) Leflunomide-associated pancytopenia with or without methotrexate. Ann Pharmacother 38(7–8):1206–1211

    Article  PubMed  Google Scholar 

  13. Bredemeier M, Ranza R, Kakehasi AM et al (2021) Safety of the methotrexate-leflunomide combination in rheumatoid arthritis: results of a multicentric, registry-based, cohort study (biobadabrasil). J Rheumatol 48(10):1519–1527

    Article  CAS  PubMed  Google Scholar 

  14. Quach LT, Chang BH, Brophy MT et al (2017) Rheumatoid arthritis triple therapy compared with etanercept: difference in infectious and gastrointestinal adverse events. Rheumatology 56(3):378–383

    PubMed  Google Scholar 

  15. Basin KS, Escalante A, Beardmore TD (1991) Severe pancytopenia in a patient taking low dose methotrexate and probenecid. J Rheumatol 18(4):609–610

    CAS  PubMed  Google Scholar 

  16. Sathi N, Ackah J, Dawson J (2006) Methotrexate induced neutropenia associated with coprescription of penicillins: serious and under-reported? Rheumatology 45(3):361–362

    Article  CAS  PubMed  Google Scholar 

  17. Homann F, Bantel C, Jobski K (2019) Agranulocytosis attributed to metamizole: an analysis of spontaneous reports in EudraVigilance 1985–2017. Basic Clin Pharmacol Toxicol 126:116–125

    Article  Google Scholar 

  18. Bologna C, Viu P, Jorgensen C et al (1996) Effect of age on the efficacy and tolerance of methotrexate in rheumatoid arthritis. Br J Rheumatol 35(5):453–457

    Article  CAS  PubMed  Google Scholar 

  19. Patil P, Parker RA, Rawcliffe C et al (2014) Methotrexate-induced nausea and vomiting in adolescent and young adult patients. Clin Rheumatol 33(3):403–407

    Article  PubMed  Google Scholar 

  20. Bressolle F, Bologna C, Kinowski JM (1989) Effects of moderate renal insufficiency on pharmacokinetics of methotrexate in rheumatoid arthritis patients. Ann Rheum Dis 57:110–113

    Article  Google Scholar 

  21. Furst DE (1996) Pharmacokinetics of hydroxychloroquine and chloroquine during treatment of rheumatic diseases. Lupus 5(1):S11–5

    Article  CAS  PubMed  Google Scholar 

  22. Leden I (1982) Digoxin-hydroxychloroquine interaction. Acta Med Scand 211:411–412

    Article  CAS  PubMed  Google Scholar 

  23. Ette EI, Brown-Awala EA, Essien EE (1987) Chloroquine elimination in humans: effect of low-dose cimetidine. J Clin Pharmacol 27:813–816

    Article  CAS  PubMed  Google Scholar 

  24. Choi BJ, Koo Y, Kim TY et al (2021) Risk of QT prolongation through drug interactions between hydroxychloroquine and concomitant drugs prescribed in real world practice. Nat Sci Rep 11:6918

    ADS  CAS  Google Scholar 

  25. Lane JCE, Weaver J, Kostka K et al (2020) Risk of hydroxychloroquine alone and in combination with azithromycin in the treatment of rheumatoid arthritis: a multinational, retrospective study. Lancet Rheumatol 2:e698–711

    Article  PubMed  PubMed Central  Google Scholar 

  26. Melles RB, Marmor MF (2014) The risk of toxic retinopathy in patients on long-term hydroxychloroquine therapy. JAMA Ophthalmol 132:1453–1460

    Article  PubMed  Google Scholar 

  27. Fiehn C, Ness T, Weseloh C et al (2019) Sicherheitsmanagement der Therapie mit Antimalariamitteln in der Rheumatologie. Interdisziplinäre Empfehlungen auf der Basis einer systematischen Literaturrecherche. Z Rheumatol 79(2):186–194

    Article  Google Scholar 

  28. Plosker GL, Croom KF (2005) Sulfasalazine. Drugs 65:1825–1849

    Article  CAS  PubMed  Google Scholar 

  29. Juhl RP, Summers RW, Guillory JK et al (1976) Effect of sulfasalazine on digoxin bioavailability. Clin Pharmacol Ther 20:387–394

    Article  CAS  PubMed  Google Scholar 

  30. Jansen G, van der Heijden J, Oerlemans R et al (2004) Sulfasalazine is a potent inhibitor of the reduced folate carrier—implications for combination therapies with methotrexate in rheumatoid arthritis. Arthritis Rheum 50:2130–2139

    Article  CAS  PubMed  Google Scholar 

  31. Das KM, Eastwood MA (1973) Effect of iron and calcium on salicylazosulphapyridine metabolism. Scott Med J 18:45–50

    Article  CAS  PubMed  Google Scholar 

  32. Du Cheyron D, Debruyne D, Lobbedez T et al (1999) Effect of sulfasalazine on cyclosporin blood concentration. Eur J Clin Pharmacol 55:227–228

    Article  CAS  PubMed  Google Scholar 

  33. Prakash A, Jarvis B (1999) Leflunomid: a review of its use in active rheumatoid arthritis. Drugs 58(6):1137–1164

    Article  CAS  PubMed  Google Scholar 

  34. Lim V, Pande I (2002) Leflunomide can potentiate the anticoagulant effect of warfarin. BMJ 325(7376):1333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chonlahan J, Halloran MA, Hammonds A (2006) Leflunomide and warfarin interaction: case report and review of the literature. Pharmacotherapy 26(6):868–871

    Article  PubMed  Google Scholar 

  36. Rutanen J, Kononoff A, Arstila L et al (2014) Five cases of interstitial lung disease after leflunomide was combined with methotrexate therapy. Scand J Rheumatol 43(3):254–258

    Article  CAS  PubMed  Google Scholar 

  37. Burmester GR, Mariette X, Montecucco C et al (2007) Adalimumab alone and in combination with disease-modifying antirheumatic drugs for the treatment of rheumatoid arthritis in clinical practice: the research in active rheumatoid arthritis (react) trial. Ann Rheum Dis 66(6):732–739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Narváez J, Díaz-Torné C, Ruiz JM et al (2011) Comparative effectiveness of rituximab in combination with either methotrexate or leflunomide in the treatment of rheumatoid arthritis. Semin Arthritis Rheum 41(3):401–405

    Article  PubMed  Google Scholar 

  39. Behrens F, Koehm M, Rossmanith T et al (2021) Rituximab plus leflunomide in rheumatoid arthritis: a randomized, placebo-controlled, investigator-initiated clinical trial (AMARA study). Rheumatology 60(11):5318–5328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Beaman JM, Hackett LP, Luxton G et al (2002) Effect of hemodialysis on leflunomide plasma concentrations. Ann Pharmacother 36(1):75–77

    Article  PubMed  Google Scholar 

  41. Iwamoto M, Homma S, Asano Y et al (2005) Administration of leflunomide to a patient with rheumatoid arthritis on haemodialysis. Scand J Rheumatol 34(5):410–411

    Article  CAS  PubMed  Google Scholar 

  42. Bergner R, Peters L, Schmitt V et al (2013) Leflunomide in dialysis patients with rheumatoid arthritis—a pharmacokinetic study. Clin Rheumatol 32(2):267–270

    Article  PubMed  Google Scholar 

  43. Russo PA, Wiese MD, Smith MD et al (2013) Leflunomide for inflammatory arthritis in end-stage renal disease on peritoneal dialysis: a pharmacokinetic and pharmacogenetic study. Ann Pharmacother 47:e15

    Article  PubMed  Google Scholar 

  44. Scott LJ (2017) Tofacitinib: a review in rheumatoid arthritis. Drugs 77:1865–1879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gupta P, Chow V, Wang R et al (2014) Evaluation of the effect of fluconazole and ketoconazole on the pharmacokinetics of tofacitinib in healthy adult subjects. Clin Pharmacol Drug Dev 3:72–77

    Article  CAS  PubMed  Google Scholar 

  46. Guo X, Li W, Li Q et al (2019) Tofacitinib is a mechanism-based inactivator of cytochrome P450 3A4. Chem Res Toxicol 32:1791–1800

    Article  CAS  PubMed  Google Scholar 

  47. Veeravalli V, Dash RP, Thomas JA et al (2020) Critical assessment of pharmacokinetic drug-drug interaction potential of tofacitinib, baricitinib and upadacitinib, the three approved Janus Kinase inhibitors for rheumatoid arthritis treatment. Drug Saf 43:711–725

    Article  CAS  PubMed  Google Scholar 

  48. Shi JG, Chen X, Lee F et al (2014) The pharmacokinetics, pharmacodynamics, and safety of baricitinib, an oral JAK 1/2 inhibitor, in healthy volunteers. J Clin Pharmacol 54:1354–1361

    Article  CAS  PubMed  Google Scholar 

  49. Mogul A, Corsi K, McAuliffe L (2019) Baricitinib: the second FDA-approved JAK inhibitor for the treatment of rheumatoid arthritis. Ann Pharmacother 53:947–953

    Article  CAS  PubMed  Google Scholar 

  50. Posada MM, Cannady EA, Payne CD et al (2017) Prediction of transporter-mediated drug-drug interactions for baricitinib. Clin Transl Sci 10(6):509–519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Al-Salama ZT, Scott LJ (2018) Baricitinib: a review in rheumatoid arthritis. Drugs 78:761–772

    Article  CAS  PubMed  Google Scholar 

  52. Meng A, Anderson K, Nelson C et al (2022) Exposure-response relationships for the efficacy and safety of filgotinib and its metabolite GS-829845 in subjects with rheumatoid arthritis based on phase 2 and phase 3 studies. Br J Clin Pharmacol 88:3211–3221

    Article  CAS  PubMed  Google Scholar 

  53. Dhillon S, Keam SJ (2020) Filgotinib: first approval. Drugs 80:1987–1997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hsueh CH, Anderson K, Shen G et al (2022) Evaluation of the potential drug interactions mediated through P‑gp, OCT2, and MATE1/2K with filgotinib in healthy subjects. Clin Transl Sci 15:361–370

    Article  CAS  PubMed  Google Scholar 

  55. Anderson K, Nelson CH, Gong Q et al (2022) Assessment of the effect of filgotinib on the pharmacokinetics of atorvastatin, pravastatin, and rosuvastatin in healthy adult participants. Clin Pharmacol Drug Dev 11:235–245

    Article  CAS  PubMed  Google Scholar 

  56. Namour F, Desrivot J, Van der Aa A et al (2016) Clinical confirmation that the selective JAK1 inhibitor filgotinib (GLPG0634) has a low liability for drug-drug interactions. Drug Metab Lett 10:38–48

    Article  CAS  PubMed  Google Scholar 

  57. Mohamed MF, Jungerwirth S, Asatryan A et al (2017) Assessment of effect of CYP3A inhibition, CYP induction, OATP1B inhibition, and high-fat meal on pharmacokinetics of the JAK1 inhibitor upadacitinib. Br J Clin Pharmacol 83:2242–2248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Mohamed MF, Camp HS, Jiang P et al (2016) Pharmacokinetics, safety and tolerability of ABT-494, a novel selective JAK 1 inhibitor, in healthy volunteers and subjects with rheumatoid arthritis. Clin Pharmacokinet 55(12):1547–1558

    Article  CAS  PubMed  Google Scholar 

  59. Menon S, Riese R, Wang R et al (2016) Evaluation of the effect of tofacitinib on the pharmacokinetics of oral contraceptive steroids in healthy female volunteers. Clin Pharmacol Drug Dev 5:336–342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Begley R, Anderson K, Watkins TR et al (2021) Lack of drug-drug interaction between filgotinib, a selective JAK1 inhibitor, and oral hormonal contraceptives levonorgestrel/ethinyl estradiol in healthy volunteers. Clin Pharmacol Drug Dev 10:376–383

    Article  CAS  PubMed  Google Scholar 

  61. Mohamed MF, Trueman S, Feng T et al (2019) The JAK1 inhibitor upadacitinib has no effect on the pharmacokinetics of levonorgestrel and ethinylestradiol: a study in healthy female subjects. J Clin Pharmacol 59:510–516

    Article  CAS  PubMed  Google Scholar 

  62. Payne C, Zhang X, Shahri N et al (2015) AB0492 evaluation of potential drug-drug interactions with baricitinib. Ann Rheum Dis 74:1063–1063

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Fiehn.

Ethics declarations

Conflict of interest

The authors point out the following. C. Fiehn, J. Leipe, and K. Krüger: lecture and/or consulting fees from Abbvie, Galapagos, Lilly, Medac, and Pfizer. R. Bergner: lecture and/or consulting fees from Abbvie and Galapagos. C. Weseloh declares that she has no competing interests.

For this article no studies with human participants or animals were performed by any of the authors. All studies mentioned were in accordance with the ethical standards indicated in each case.

Additional information

figure qr

Scan QR code & read article online

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fiehn, C., Leipe, J., Weseloh, C. et al. Assessment of interactions and dosage recommendations of synthetic DMARDs—Evidence-based and consensus-based recommendations based on a systematic literature search. Z Rheumatol 83 (Suppl 1), 8–19 (2024). https://doi.org/10.1007/s00393-023-01417-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00393-023-01417-3

Keywords

Schlüsselwörter

Navigation