Skip to main content

Advertisement

Log in

Integrated comparison of the mRNAome in cartilage, synovium, and macrophages in osteoarthritis

Integrierter Vergleich des mRNAome in Knorpel, Synovium und Makrophagen bei Arthrose

  • Originalien
  • Published:
Zeitschrift für Rheumatologie Aims and scope Submit manuscript

Abstract

The precise molecular mechanisms associated with osteoarthritis (OA), the most common musculoskeletal disorder, are poorly understood. There are currently no effective treatments to prevent the initiation and progression of the disease. In recent years, the development of mRNAome has made it possible to identify new mechanisms and therapeutic targets. However, the differentially expressed genes screened by different microarrays are not completely the same. In order to avoid this shortcoming, we integrate the different genes from different tissues and data sets, and select the commonly expressed genes for further studies.

Zusammenfassung

Bisher sind die genauen molekularen Mechanismen, die mit Arthrose, der häufigsten mukuloskeletalen Erkrankung, einhergehen, nur unzureichend verstanden. Derzeit stehen keine wirksamen Therapien zu Verfügung, um den Beginn und das Fortschreiten der Krankheit zu verhindern. In den letzten Jahren ist es durch die Entwicklung des mRNAoms möglich geworden, neue Mechanismen und therapeutische Ziele zu identifizieren. Aber die unterschiedlich exprimierten Gene, die mittels verschiedener Microarrays untersucht werden, sind nicht völlig identisch. Um diesem Mangel abzuhelfen, werden die unterschiedlichen Gene aus verschiedenen Geweben und Datensätzen integriert und die häufig exprimierten Gene für weitere Studien ausgewählt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Dahaghin S, Bierma-Zeinstra SM, Ginai AZ, Pols HA, Hazes JM, Koes BW (2005) Prevalence and pattern of radiographic hand osteoarthritis and association with pain and disability (the Rotterdam study). Ann Rheum Dis 64(5):682–687

    Article  CAS  PubMed  Google Scholar 

  2. Oliveria SA, Felson DT, Reed JI, Cirillo PA, Walker AM (1995) Incidence of symptomatic hand, hip, and knee osteoarthritis among patients in a health maintenance organization. Arthritis Rheum 38(8):1134–1141

    Article  CAS  PubMed  Google Scholar 

  3. Dillon CF, Rasch EK, Gu Q, Hirsch R (2006) Prevalence of knee osteoarthritis in the United States: arthritis data from the third national health and nutrition examination survey 1991–94. J Rheumatol 33(11):2271–2279

    PubMed  Google Scholar 

  4. Xia B, Di C, Zhang J, Hu S, Jin H, Tong P (2014) Osteoarthritis pathogenesis: a review of molecular mechanisms. Calcif Tissue Int 95(6):495–505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Felson DT (2006) Clinical practice. Osteoarthritis of the knee. N Engl J Med 354(8):841–848

    Article  CAS  PubMed  Google Scholar 

  6. Hunter DJ, March L, Sambrook PN (2002) Knee osteoarthritis: the influence of environmental factors. Clin Exp Rheumatol 20(1):93–100

    CAS  PubMed  Google Scholar 

  7. Findlay DM, Atkins GJ (2014) Osteoblast-chondrocyte interactions in osteoarthritis. Curr Osteoporos Rep 12(1):127–134

    Article  PubMed  PubMed Central  Google Scholar 

  8. Zhong L, Huang X, Karperien M, Post JN (2015) The regulatory role of signaling crosstalk in hypertrophy of MSCs and human articular chondrocytes. Int J Mol Sci 16(8):19225–19247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chen YJ, Chang WA, Wu LY, Hsu YL, Chen CH, Kuo PL (2018) Systematic analysis of transcriptomic profile of chondrocytes in osteoarthritic knee using next-generation sequencing and bioinformatics. J Clin Med 7(12):535. https://doi.org/10.3390/jcm7120535

    Article  PubMed  PubMed Central  Google Scholar 

  10. Scanzello CR, Goldring SR (2012) The role of synovitis in osteoarthritis pathogenesis. Bone 51(2):249–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Griffin TM, Scanzello CR (2019) Innate inflammation and synovial macrophages in osteoarthritis pathophysiology. Clin Exp Rheumatol 37(120):57–63

    PubMed  PubMed Central  Google Scholar 

  12. Kraus VB, McDaniel G, Huebner JL, Stabler TV, Pieper CF, Shipes SW et al (2016) Direct in vivo evidence of activated macrophages in human osteoarthritis. Osteoarthr Cartil 24(9):1613–1621

    Article  CAS  Google Scholar 

  13. Zhang H, Cai D, Bai X (2020) Macrophages regulate the progression of osteoarthritis. Osteoarthr Cartil 28(5):555–561

    Article  CAS  Google Scholar 

  14. Zhou Y, Wang Z, Chen X, Zhang J, Yang L, Liu S et al (2020) Identification of differentially expressed miRNAs and mRNAs in synovial of osteoarthritis via RNA-sequencing. BMC Med Genet 21(1):46

    Article  PubMed  PubMed Central  Google Scholar 

  15. Zhang H, Chen C, Cui Y, Li Y, Wang Z, Mao X et al (2019) lnc-SAMD14‑4 can regulate expression of the COL1A1 and COL1A2 in human chondrocytes. PeerJ 7:e7491

    Article  PubMed  PubMed Central  Google Scholar 

  16. Fisch KM, Gamini R, Alvarez-Garcia O, Akagi R, Saito M, Muramatsu Y et al (2018) Identification of transcription factors responsible for dysregulated networks in human osteoarthritis cartilage by global gene expression analysis. Osteoarthr Cartil 26(11):1531–1538

    Article  CAS  Google Scholar 

  17. Brophy RH, Zhang B, Cai L, Wright RW, Sandell LJ, Rai MF (2018) Transcriptome comparison of meniscus from patients with and without osteoarthritis. Osteoarthr Cartil 26(3):422–432

    Article  CAS  Google Scholar 

  18. Chou CH, Wu CC, Song IW, Chuang HP, Lu LS, Chang JH et al (2013) Genome-wide expression profiles of subchondral bone in osteoarthritis. Arthritis Res Ther 15(6):R190

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ramos YF, Bos SD, Lakenberg N, Bohringer S, den Hollander WJ, Kloppenburg M et al (2014) Genes expressed in blood link osteoarthritis with apoptotic pathways. Ann Rheum Dis 73(10):1844–1853

    Article  CAS  PubMed  Google Scholar 

  20. Hu SI, Carozza M, Klein M, Nantermet P, Luk D, Crowl RM (1998) Human HtrA, an evolutionarily conserved serine protease identified as a differentially expressed gene product in osteoarthritic cartilage. J Biol Chem 273(51):34406–34412

    Article  CAS  PubMed  Google Scholar 

  21. Hou Y, Lin H, Zhu L, Liu Z, Hu F, Shi J et al (2014) The inhibitory effect of IFN-gamma on protease HTRA1 expression in rheumatoid arthritis. J Immunol 193(1):130–138

    Article  CAS  PubMed  Google Scholar 

  22. Tsuchiya A, Yano M, Tocharus J, Kojima H, Fukumoto M, Kawaichi M et al (2005) Expression of mouse HtrA1 serine protease in normal bone and cartilage and its upregulation in joint cartilage damaged by experimental arthritis. Bone 37(3):323–336

    Article  CAS  PubMed  Google Scholar 

  23. Song EK, Jeon J, Jang DG, Kim HE, Sim HJ, Kwon KY et al (2018) ITGBL1 modulates integrin activity to promote cartilage formation and protect against arthritis. Sci Transl Med 10(462):eaam7486. https://doi.org/10.1126/scitranslmed.aam7486

    Article  CAS  PubMed  Google Scholar 

  24. Murayama MA, Kakuta S, Maruhashi T, Shimizu K, Seno A, Kubo S et al (2014) CTRP3 plays an important role in the development of collagen-induced arthritis in mice. Biochem Biophys Res Commun 443(1):42–48

    Article  CAS  PubMed  Google Scholar 

  25. Huang Y, Wan G, Tao J (2017) C1q/TNF-related protein‑3 exerts the chondroprotective effects in IL-1beta-treated SW1353 cells by regulating the FGFR1 signaling. Biomed Pharmacother 85:41–46

    Article  CAS  PubMed  Google Scholar 

  26. Liu R, Shuai Y, Luo J, Zhang Z (2019) SEMA3C promotes cervical cancer growth and is associated with poor prognosis. Front Oncol 9:1035

    Article  PubMed  PubMed Central  Google Scholar 

  27. Zhang H, Ma H, Zhang W, Duan D, Zhu G, Cao W et al (2020) Increased expression of Sema3C indicates a poor prognosis and is regulated by miR-142-5p in glioma. Biol Pharm Bull 43(4):639–648

    Article  CAS  PubMed  Google Scholar 

  28. Yin L, Li J, Wang J, Pu T, Wei J, Li Q et al (2021) MAOA promotes prostate cancer cell perineural invasion through SEMA3C/PlexinA2/NRP1-cMET signaling. Oncogene 40(7):1362–1374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tang MW, Malvar Fernandez B, Newsom SP, van Buul JD, Radstake T, Baeten DL et al (2018) Class 3 semaphorins modulate the invasive capacity of rheumatoid arthritis fibroblast-like synoviocytes. Baillieres Clin Rheumatol 57(5):909–920

    CAS  Google Scholar 

  30. Nanthapisal S, Eleftheriou D, Gilmour K, Leone V, Ramnath R, Omoyinmi E et al (2018) Cutaneous vasculitis and recurrent infection caused by deficiency in complement factor I. Front Immunol 9:735

    Article  PubMed  PubMed Central  Google Scholar 

  31. Tseng MH, Fan WL, Liu H, Yang CY, Ding JJ, Lee HJ et al (2020) Complement factor I mutation may contribute to development of thrombotic microangiopathy in lupus nephritis. Front Med 7:621609

    Article  Google Scholar 

  32. Servais A, Noel LH, Roumenina LT, Le Quintrec M, Ngo S, Dragon-Durey MA et al (2012) Acquired and genetic complement abnormalities play a critical role in dense deposit disease and other C3 glomerulopathies. Kidney Int 82(4):454–464

    Article  CAS  PubMed  Google Scholar 

  33. Tseng MH, Lin SH, Wu CY, Chien HP, Yang HY, Chen YC et al (2018) Serum complement factor I is associated with disease activity of systemic lupus erythematosus. Oncotarget 9(9):8502–8511

    Article  PubMed  PubMed Central  Google Scholar 

  34. Uzquiano A, Cifuentes-Diaz C, Jabali A, Romero DM, Houllier A, Dingli F et al (2019) Mutations in the heterotopia gene Eml1/EML1 severely disrupt the formation of primary cilia. Cell Rep 28(6):1596–1611.e10

    Article  CAS  PubMed  Google Scholar 

  35. Li S, Zhao W, Sun M (2020) An analysis regarding the association between the ISLR gene and gastric carcinogenesisa. Front Genet 11:620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kobayashi H, Gieniec KA, Wright JA, Wang T, Asai N, Mizutani Y et al (2021) The balance of stromal BMP signaling mediated by GREM1 and ISLR drives colorectal carcinogenesis. Gastroenterology 160(4):1224–1239.e30

    Article  CAS  PubMed  Google Scholar 

  37. Cui C, Han S, Shen X, He H, Chen Y, Zhao J et al (2020) ISLR regulates skeletal muscle atrophy via IGF1-PI3K/Akt-Foxo signaling pathway. Cell Tissue Res 381(3):479–492

    Article  CAS  PubMed  Google Scholar 

  38. de Rotte MC, Bulatovic M, Heijstek MW, Jansen G, Heil SG, van Schaik RH et al (2012) ABCB1 and ABCC3 gene polymorphisms are associated with first-year response to methotrexate in juvenile idiopathic arthritis. J Rheumatol 39(10):2032–2040

    Article  PubMed  Google Scholar 

  39. de Rotte M, Pluijm SMF, de Jong PHP, Bulatovic Calasan M, Wulffraat NM, Weel A et al (2018) Development and validation of a prognostic multivariable model to predict insufficient clinical response to methotrexate in rheumatoid arthritis. PLoS ONE 13(12):e208534

    Article  PubMed  PubMed Central  Google Scholar 

  40. Xiao C, Lv C, Sun S, Zhao H, Ling H, Li M et al (2021) TSP1 is the essential domain of SEMA5A involved in pannus formation in rheumatoid arthritis. Baillieres Clin Rheumatol 60(12):5833–5842

    CAS  Google Scholar 

  41. Gras C, Eiz-Vesper B, Jaimes Y, Immenschuh S, Jacobs R, Witte T et al (2014) Secreted semaphorin 5A activates immune effector cells and is a biomarker for rheumatoid arthritis. Arthritis Rheumatol 66(6):1461–1471

    Article  CAS  PubMed  Google Scholar 

  42. Du Y, Wu X, Chen M, Wang W, Xv W, Ye L et al (2017) Elevated semaphorin5A in systemic lupus erythematosus is in association with disease activity and lupus nephritis. Clin Exp Immunol 188(2):234–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yuan L, Le Bras A, Sacharidou A, Itagaki K, Zhan Y, Kondo M et al (2012) ETS-related gene (ERG) controls endothelial cell permeability via transcriptional regulation of the claudin 5 (CLDN5) gene. J Biol Chem 287(9):6582–6591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cong X, Zhang XM, Zhang Y, Wei T, He QH, Zhang LW et al (2018) Disruption of endothelial barrier function is linked with hyposecretion and lymphocytic infiltration in salivary glands of Sjogren’s syndrome. Biochim Biophys Acta Mol Basis Dis 1864(10):3154–3163

    Article  CAS  PubMed  Google Scholar 

  45. Aho TL, Lund RJ, Ylikoski EK, Matikainen S, Lahesmaa R, Koskinen PJ (2005) Expression of human pim family genes is selectively up-regulated by cytokines promoting T helper type 1, but not T helper type 2, cell differentiation. Immunology 116(1):82–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kim K, Kim JH, Youn BU, Jin HM, Kim N (2010) Pim‑1 regulates RANKL-induced osteoclastogenesis via NF-kappaB activation and NFATc1 induction. J Immunol 185(12):7460–7466

    Article  CAS  PubMed  Google Scholar 

  47. Ha YJ, Choi YS, Han DW, Kang EH, Yoo IS, Kim JH et al (2019) PIM‑1 kinase is a novel regulator of proinflammatory cytokine-mediated responses in rheumatoid arthritis fibroblast-like synoviocytes. Baillieres Clin Rheumatol 58(1):154–164

    CAS  Google Scholar 

  48. Ma D, Yu T, Peng L, Wang L, Liao Z, Xu W (2019) PIM1, CYP1B1, and HSPA2 targeted by quercetin play important roles in osteoarthritis treatment by achyranthes bidentata. Evid Based Complement Alternat Med 2019:1205942

    Article  PubMed  PubMed Central  Google Scholar 

  49. Fu R, Xia Y, Li M, Mao R, Guo C, Zhou M et al (2019) Pim‑1 as a therapeutic target in lupus nephritis. Arthritis Rheumatol 71(8):1308–1318

    Article  CAS  PubMed  Google Scholar 

  50. Woodell-May JE, Sommerfeld SD (2020) Role of inflammation and the immune system in the progression of osteoarthritis. J Orthop Res 38(2):253–257

    Article  PubMed  Google Scholar 

  51. Estrada McDermott J, Pezzanite L, Goodrich L, Santangelo K, Chow L, Dow S et al (2021) Role of innate immunity in initiation and progression of osteoarthritis, with emphasis on horses. Animals 11(11):3247

    Article  PubMed  PubMed Central  Google Scholar 

  52. Barreto G, Manninen M, Eklund KK (2020) Osteoarthritis and toll-like receptors: when innate immunity meets chondrocyte apoptosis. Biology 9(4):65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Edilova MI, Akram A, Abdul-Sater AA (2021) Innate immunity drives pathogenesis of rheumatoid arthritis. Biomed J 44(2):172–182

    Article  CAS  PubMed  Google Scholar 

  54. McInnes IB, Schett G (2011) The pathogenesis of rheumatoid arthritis. N Engl J Med 365(23):2205–2219

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by grants from the National Natural Science Foundation of China (81901668) and Beijing Jishuitan Hospital Nova Program (XKXX-202112).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Song.

Ethics declarations

Conflict of interest

S. Gao and H. Song declare that they have no competing interests.

For this article no studies with human participants or animals were performed by any of the authors. All studies performed were in accordance with the ethical standards indicated in each case.

Additional information

Redaktion

Ulf Müller-Ladner, Bad Nauheim

Uwe Lange, Bad Nauheim

figure qr

Scan QR code & read article online

Supplementary Information

Table S1

Differentially expressed mRNAs in osteoarthritis (upregulated)

Table S2

Differentially expressed mRNAs in osteoarthritis (downregulated)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, S., Song, H. Integrated comparison of the mRNAome in cartilage, synovium, and macrophages in osteoarthritis. Z Rheumatol 83 (Suppl 1), 62–70 (2024). https://doi.org/10.1007/s00393-022-01171-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00393-022-01171-y

Keywords

Schlüsselwörter

Navigation