Skip to main content

Advertisement

Log in

Morbus Still – Ähnlichkeiten und Differenzen zwischen juveniler und adulter Form

Still’s syndrome—similarities and differences between the juvenile and adult forms

  • Leitthema
  • Published:
Zeitschrift für Rheumatologie Aims and scope Submit manuscript

Zusammenfassung

Die systemische juvenile idiopathische Arthritis (sJIA) und die adulte Form des Morbus Still („adult-onset Still’s disease“, AOSD) gehören zum Still-Syndrom. Bis auf das Lebensalter finden sich viele Gemeinsamkeiten zwischen sJIA und AOSD. Heutzutage wird ein biphasisches Krankheitsmodell angenommen. Initial steht dabei die Autoinflammation im Vordergrund, die v. a. durch die Dysregulation des angeborenen Immunsystem bedingt ist. Im späteren Verlauf kann die Erkrankung zu einer chronisch-artikulären Verlaufsform wechseln, die vorwiegend durch das adaptive Immunsystem und somit durch Autoimmunität hervorgerufen wird. Die Hypothese des „Window of Opportunity“ beruht auf diesem biphasischen Modell und besagt, dass durch eine frühe zielgerichtete Therapie ein Wechsel der Verlaufsformen verhindert werden kann. Eine schwere Komplikation des „Zytokinsturms“ der systemischen Krankheitsphase stellt das Makrophagenaktivierungssyndrom dar. Klinisch bestehen viele Gemeinsamkeiten zwischen sJIA und AOSD. So gehören u. a. rezidivierende Fieberschübe, ein flüchtiges lachsfarbenes Exanthem und Arthralgien bzw. Arthritis zu häufigen Beschwerden in allen Altersgruppen. Die wenigen Unterschiede betreffen v. a. die Therapien und Nebenwirkungsspektren bei Kindern gegenüber Erwachsenen. Die genetischen Komponenten sind beim AOSD etwas weniger stark ausgeprägt als bei der sJIA, aber auch diesbezüglich gibt es fließende Übergänge. Ferner sind beide Erkrankungen durch exogene Faktoren wie mikrobielle Trigger stark beeinflusst. Zukünftige Forschungsaspekte könnten die tiefer gehende Untersuchung dieser Auslöser wie Viren, Bakterien oder eines dysbiotischen humanen Mikrobioms beinhalten.

Abstract

Still’s syndrome includes systemic juvenile idiopathic arthritis (sJIA) and the adult form of Still’s disease (adult-onset Still’s disease, AOSD). Except for age, there are many similarities between sJIA and AOSD. A biphasic disease model is currently put forth. At disease onset, autoinflammation predominates, which is caused by dysregulation of the innate immune system. Later on, the disease can progress to a chronic-articular form, which is predominantly mediated by the adaptive immune system and is consequently due to autoimmunity. The “window-of-opportunity” hypothesis is based on this biphasic model and supports the assumption that an early, targeted therapy with cytokine blockade can prevent disease progression to chronic destructive arthritis. Macrophage activation syndrome (MAS) is a serious complication of the so-called cytokine storm during the systemic phase of the disease. Clinically, there are many similarities between sJIA and AOSD. Recurrent fever, a fleeting, salmon-colored rash, and arthralgia/arthritis are common signs and symptoms of both sJIA and AOSD. The few differences are mainly related to the therapies and their side effects in children versus adults. In addition, the contribution of genetics to pathogenesis is more pronounced in sJIA compared to AOSD, but there are also smooth transitions in this respect and both diseases are heavily influenced by exogenous factors such as microbial triggers. Future research aspects could include additional investigation of these triggers such as viruses, bacteria, or dysbiosis of the human microbiome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. Still GF (1897) On a form of chronic joint disease in children. Med Chir Trans 80:47–60.9

    Article  CAS  Google Scholar 

  2. Hamilton EB (1986) George Frederic Still. Ann Rheum Dis 45:1–5

    Article  CAS  Google Scholar 

  3. Bywaters EG (1971) Still’s disease in the adult. Ann Rheum Dis 30:121–133

    Article  CAS  Google Scholar 

  4. Silva JR, Brito I (2020) Systemic juvenile idiopathic arthritis versus adult-onset Still s disease: the pertinence of changing the current classification criteria. Acta Reumatol Port 45:150–151

    PubMed  Google Scholar 

  5. Petty RE, Southwood TR, Manners P et al (2004) International league of associations for rheumatology classification of juvenile idiopathic arthritis: second revision, Edmonton, 2001. J Rheumatol 31:390–392

    PubMed  Google Scholar 

  6. Yamaguchi M, Ohta A, Tsunematsu T et al (1992) Preliminary criteria for classification of adult Still’s disease. J Rheumatol 19:424–430

    CAS  PubMed  Google Scholar 

  7. Hinze CH, Holzinger D, Lainka E et al (2018) Practice and consensus-based strategies in diagnosing and managing systemic juvenile idiopathic arthritis in Germany. Pediatr Rheumatol Online J 16:7

    Article  Google Scholar 

  8. Nigrovic PA, Colbert RA, Holers VM et al (2021) Biological classification of childhood arthritis: roadmap to a molecular nomenclature. Nat Rev Rheumatol 17:257–269

    Article  Google Scholar 

  9. Tomaras S, Goetzke CC, Kallinich T et al (2021) Adult-onset still’s disease: clinical aspects and therapeutic approach. J Clin Med 10(4):733. https://doi.org/10.3390/jcm10040733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Manger B, Rech J, Schett G (2010) Use of methotrexate in adult-onset Still’s disease. Clin Exp Rheumatol 28:S168–171

    CAS  PubMed  Google Scholar 

  11. Feist E, Mitrovic S, Fautrel B (2018) Mechanisms, biomarkers and targets for adult-onset Still’s disease. Nat Rev Rheumatol 14:603–618

    Article  Google Scholar 

  12. Giacomelli R, Ruscitti P, Shoenfeld Y (2018) A comprehensive review on adult onset Still’s disease. J Autoimmun 93:24–36

    Article  Google Scholar 

  13. Kessel C, Hedrich CM, Foell D (2020) Innately adaptive or truly autoimmune: is there something unique about systemic juvenile idiopathic arthritis? Arthritis Rheumatol 72:210–219

    Article  Google Scholar 

  14. Kessel C, Lippitz K, Weinhage T et al (2017) Proinflammatory cytokine environments can drive Interleukin-17 overexpression by gamma/delta T cells in systemic juvenile idiopathic arthritis. Arthritis Rheumatol 69:1480–1494

    Article  CAS  Google Scholar 

  15. Gohar F, Mcardle A, Jones M et al (2019) Molecular signature characterisation of different inflammatory phenotypes of systemic juvenile idiopathic arthritis. Ann Rheum Dis 78:1107–1113

    Article  CAS  Google Scholar 

  16. Schulert GS, Grom AA (2015) Pathogenesis of macrophage activation syndrome and potential for cytokine-directed therapies. Annu Rev Med 66:145–159

    Article  CAS  Google Scholar 

  17. Zhang K, Jordan MB, Marsh RA et al (2011) Hypomorphic mutations in PRF1, MUNC13‑4, and STXBP2 are associated with adult-onset familial HLH. Blood 118:5794–5798

    Article  CAS  Google Scholar 

  18. Kaufman KM, Linghu B, Szustakowski JD et al (2014) Whole-exome sequencing reveals overlap between macrophage activation syndrome in systemic juvenile idiopathic arthritis and familial hemophagocytic lymphohistiocytosis. Arthritis Rheumatol 66:3486–3495

    Article  CAS  Google Scholar 

  19. Kessel C, Fall N, Grom A et al (2021) Definition and validation of serum biomarkers for optimal differentiation of hyperferritinaemic cytokine storm conditions in children: a retrospective cohort study. Lancet Rheumatol. https://doi.org/10.1016/S2665-9913(21)00115-6

    Article  Google Scholar 

  20. Canna SW, de Jesus AA, Gouni S et al (2014) An activating NLRC4 inflammasome mutation causes autoinflammation with recurrent macrophage activation syndrome. Nat Genet 46:1140–1146

    Article  CAS  Google Scholar 

  21. Romberg N, Al Moussawi K, Nelson-Williams C et al (2014) Mutation of NLRC4 causes a syndrome of enterocolitis and autoinflammation. Nat Genet 46:1135–1139

    Article  CAS  Google Scholar 

  22. Ruff WE, Greiling TM, Kriegel MA (2020) Host-microbiota interactions in immune-mediated diseases. Nat Rev Microbiol 18:521–538

    Article  CAS  Google Scholar 

  23. Holzinger D, Frosch M, Kastrup A et al (2012) The Toll-like receptor 4 agonist MRP8/14 protein complex is a sensitive indicator for disease activity and predicts relapses in systemic-onset juvenile idiopathic arthritis. Ann Rheum Dis 71:974–980

    Article  CAS  Google Scholar 

  24. Gohar F, Kessel C, Lavric M et al (2016) Review of biomarkers in systemic juvenile idiopathic arthritis: helpful tools or just playing tricks? Arthritis Res Ther 18:163

    Article  Google Scholar 

  25. Di Benedetto P, Cipriani P, Iacono D et al (2020) Ferritin and C‑reactive protein are predictive biomarkers of mortality and macrophage activation syndrome in adult onset still’s disease. Analysis of the multicentre Gruppo Italiano di Ricerca in Reumatologia Clinica e Sperimentale (GIRRCS) cohort. PLoS ONE 15:e235326

    Article  CAS  Google Scholar 

  26. Hu QY, Zeng T, Sun CY et al (2019) Clinical features and current treatments of adult-onset Still’s disease: a multicentre survey of 517 patients in China. Clin Exp Rheumatol 37(121):52–57

    PubMed  Google Scholar 

  27. Sfriso P, Priori R, Valesini G et al (2016) Adult-onset Still’s disease: an Italian multicentre retrospective observational study of manifestations and treatments in 245 patients. Clin Rheumatol 35:1683–1689

    Article  Google Scholar 

  28. Gerfaud-Valentin M, Maucort-Boulch D, Hot A et al (2014) Adult-onset still disease: manifestations, treatment, outcome, and prognostic factors in 57 patients. Medicine 93:91–99

    Article  CAS  Google Scholar 

  29. Fautrel B, Zing E, Golmard JL et al (2002) Proposal for a new set of classification criteria for adult-onset still disease. Medicine 81:194–200

    Article  Google Scholar 

  30. Tsai HY, Lee JH, Yu HH et al (2012) Initial manifestations and clinical course of systemic onset juvenile idiopathic arthritis: a ten-year retrospective study. J Formos Med Assoc 111:542–549

    Article  Google Scholar 

  31. Behrens EM, Beukelman T, Gallo L et al (2008) Evaluation of the presentation of systemic onset juvenile rheumatoid arthritis: data from the Pennsylvania systemic onset juvenile arthritis registry (PASOJAR). J Rheumatol 35:343–348

    PubMed  Google Scholar 

  32. Correll CK, Binstadt BA (2014) Advances in the pathogenesis and treatment of systemic juvenile idiopathic arthritis. Pediatr Res 75:176–183

    Article  CAS  Google Scholar 

  33. Nigrovic PA (2014) Review: is there a window of opportunity for treatment of systemic juvenile idiopathic arthritis? Arthritis Rheumatol 66:1405–1413

    Article  CAS  Google Scholar 

  34. Ter Haar NM, van Dijkhuizen EHP, Swart JF et al (2019) Treatment to target using recombinant Interleukin‑1 receptor antagonist as first-line monotherapy in new-onset systemic juvenile idiopathic arthritis: results from a five-year follow-up study. Arthritis Rheumatol 71:1163–1173

    Article  CAS  Google Scholar 

  35. Vastert SJ, de Jager W, Noordman BJ et al (2014) Effectiveness of first-line treatment with recombinant interleukin‑1 receptor antagonist in steroid-naive patients with new-onset systemic juvenile idiopathic arthritis: results of a prospective cohort study. Arthritis Rheumatol 66:1034–1043

    Article  CAS  Google Scholar 

  36. Nigrovic PA, Mannion M, Prince FH et al (2011) Anakinra as first-line disease-modifying therapy in systemic juvenile idiopathic arthritis: report of forty-six patients from an international multicenter series. Arthritis Rheum 63:545–555

    Article  CAS  Google Scholar 

  37. Ruperto N, Brunner HI, Quartier P et al (2012) Two randomized trials of canakinumab in systemic juvenile idiopathic arthritis. N Engl J Med 367:2396–2406

    Article  CAS  Google Scholar 

  38. Kedor C, Listing J, Zernicke J et al (2020) Canakinumab for treatment of adult-onset Still’s disease to achieve reduction of arthritic manifestation (CONSIDER): phase II, randomised, double-blind, placebo-controlled, multicentre, investigator-initiated trial. Ann Rheum Dis 79:1090–1097

    Article  CAS  Google Scholar 

  39. De Benedetti F, Brunner HI, Ruperto N et al (2012) Randomized trial of tocilizumab in systemic juvenile idiopathic arthritis. N Engl J Med 367:2385–2395

    Article  CAS  Google Scholar 

  40. Ortiz-Sanjuan F, Blanco R, Calvo-Rio V et al (2014) Efficacy of tocilizumab in conventional treatment-refractory adult-onset Still’s disease: multicenter retrospective open-label study of thirty-four patients. Arthritis Rheumatol 66:1659–1665

    Article  CAS  Google Scholar 

  41. Gabay C, Fautrel B, Rech J et al (2018) Open-label, multicentre, dose-escalating phase II clinical trial on the safety and efficacy of tadekinig alfa (IL-18BP) in adult-onset Still’s disease. Ann Rheum Dis 77:840–847

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin A. Kriegel.

Ethics declarations

Interessenkonflikt

A. Regel gibt an, dass kein Interessenkonflikt besteht. M. Kriegel gibt die folgenden potenziellen Interessenskonflikte an: Beratertätigkeiten für die Firmen Novartis, Glaxo-Smith Kline, Bristol-Meyers Squibb, Merck Sharp & Dohme, Eligo Biosciences, und vorige Forschungsunterstützung von AbbVie und Anstellung bei Roche. D. Föll gibt die folgenden potenziellen Interessenskonflikte an: Beratertätigkeiten für die Firmen Novartis, Sobi und Boehringer. Forschungsunterstützung durch die Firmen Novartis, Sobi und Pfizer.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Redaktion

Hans-Iko Huppertz, Bremen

Hanns-Martin Lorenz, Heidelberg

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Regel, A., Föll, D. & Kriegel, M.A. Morbus Still – Ähnlichkeiten und Differenzen zwischen juveniler und adulter Form. Z Rheumatol 81, 22–27 (2022). https://doi.org/10.1007/s00393-021-01117-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00393-021-01117-w

Schlüsselwörter

Keywords

Navigation