Skip to main content
Log in

Autoinflammation – Unterschiede bei Kindern und Erwachsenen

Autoinflammation—differences between children and adults

  • Leitthema
  • Published:
Zeitschrift für Rheumatologie Aims and scope Submit manuscript

Zusammenfassung

Autoinflammatorische Erkrankungen präsentieren sich als multisystemische Entzündungen und werden häufig bereits im frühen Kindesalter manifest. Bei wenigen Erkrankungen, wie z. B. dem kürzlich beschriebenen VEXAS-Syndrom (Vakuolen, E1-Enzym, X‑chromosomal, autoinflammatorisch, somatisch) treten die ersten Krankheitssymptome dagegen ausschließlich im Erwachsenenalter auf. Dieser Beitrag beschreibt, inwiefern sich die phänotypische Ausprägung und Schwere einzelner autoinflammatorischer Erkrankungen in Abhängigkeit vom Lebensalter unterscheiden. Zudem werden altersabhängige Differenzen in der Ausbildung von vorliegenden Organschäden aufgezeigt. Neben den hereditären periodischen Fiebersyndromen werden auch das Krankheitsbild der Adenosindesaminase-2-Defizienz, die Interferonopathien, das PFAPA-Syndrom mit periodischem Fieber, aphthöser Stomatitis, Pharyngitis und zervikaler Adenitis sowie das VEXAS- und das Schnitzler-Syndrom beleuchtet.

Abstract

Autoinflammatory diseases present as multisystemic inflammation and often manifest in early childhood. In contrast, in a few diseases, e.g., the recently described VEXAS (vacuoles, E1 enzyme, X‑linked, autoinflammatory, somatic) syndrome, the first symptoms occur exclusively in adulthood. This article describes how the phenotypic expression and severity of individual autoinflammatory diseases differ depending on age. Furthermore, differences in the development of organ damage in children and adults are pointed out. In addition to the hereditary periodic fever syndromes, the clinical picture of deficiency of adenosine deaminase 2, the interferonopathies, periodic fever, aphthous stomatitis, pharyngitis, and adenitis syndrome as well as VEXAS and Schnitzler syndromes are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Kallinich T, Hinze C, Wittkowski H (2020) Classification of autoinflammatory diseases based on pathophysiological mechanisms. Z Rheumatol 79:624–638. https://doi.org/10.1007/s00393-020-00794-3

    Article  CAS  PubMed  Google Scholar 

  2. Gattorno M et al (2019) Classification criteria for autoinflammatory recurrent fevers. Ann Rheum Dis 78:1025–1032. https://doi.org/10.1136/annrheumdis-2019-215048

    Article  CAS  PubMed  Google Scholar 

  3. Kallinich T, Orak B, Wittkowski H (2017) Role of genetics in familial Mediterranean fever. Z Rheumatol 76:303–312. https://doi.org/10.1007/s00393-017-0265-9

    Article  CAS  PubMed  Google Scholar 

  4. Park YH et al (2020) Ancient familial Mediterranean fever mutations in human pyrin and resistance to Yersinia pestis. Nat Immunol 21:857–867. https://doi.org/10.1038/s41590-020-0705-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Langevitz P et al (1999) Familial Mediterranean fever: new aspects and prospects at the end of the millenium. Isr Med Assoc J 1:31–36

    CAS  PubMed  Google Scholar 

  6. Yalcinkaya F et al (2009) A new set of criteria for the diagnosis of familial Mediterranean fever in childhood. Rheumatology (Oxford) 48:395–398. https://doi.org/10.1093/rheumatology/ken509

    Article  Google Scholar 

  7. Demirkaya E et al (2016) Performance of different diagnostic criteria for familial Mediterranean fever in children with periodic fevers: results from a multicenter international registry. J Rheumatol 43:154–160. https://doi.org/10.3899/jrheum.141249

    Article  CAS  PubMed  Google Scholar 

  8. Kondi A et al (2010) Validation of the new paediatric criteria for the diagnosis of familial Mediterranean fever: data from a mixed population of 100 children from the French reference centre for auto-inflammatory disorders. Rheumatology (Oxford) 49:2200–2203. https://doi.org/10.1093/rheumatology/keq252

    Article  Google Scholar 

  9. Padeh S et al (2010) Familial Mediterranean fever in the first two years of life: a unique phenotype of disease in evolution. J Pediatr 156:985–989. https://doi.org/10.1016/j.jpeds.2009.12.010

    Article  PubMed  Google Scholar 

  10. Padeh S et al (2010) Familial Mediterranean fever in children presenting with attacks of fever alone. J Rheumatol 37:865–869. https://doi.org/10.3899/jrheum.090687

    Article  PubMed  Google Scholar 

  11. Hentgen V, Grateau G, Stankovic-Stojanovic K, Amselem S, Jeru I (2013) Familial Mediterranean fever in heterozygotes: are we able to accurately diagnose the disease in very young children? Arthritis Rheum 65:1654–1662. https://doi.org/10.1002/art.37935

    Article  PubMed  Google Scholar 

  12. Butbul Aviel Y et al (2019) Familial Mediterranean fever is commonly diagnosed in children in Israel with periodic fever aphthous stomatitis, pharyngitis, and adenitis syndrome. J Pediatr 204:270–274. https://doi.org/10.1016/j.jpeds.2018.08.080

    Article  PubMed  Google Scholar 

  13. Sonmez HE, Batu ED, Bilginer Y, Ozen S (2017) Discontinuing colchicine in symptomatic carriers for MEFV (Mediterranean FeVer) variants. Clin Rheumatol 36:421–425. https://doi.org/10.1007/s10067-016-3421-8

    Article  PubMed  Google Scholar 

  14. Tanatar A, Karadag SG, Sonmez HE, Cakan M, Aktay Ayaz N (2019) Short-term follow-up results of children with familial Mediterranean fever after cessation of colchicine: is it possible to quit? Rheumatology (Oxford) 58:1818–1821. https://doi.org/10.1093/rheumatology/kez156

    Article  Google Scholar 

  15. Ricci P et al (2020) The grandfather’s fever. Clin Rheumatol 39:585–594. https://doi.org/10.1007/s10067-019-04741-9

    Article  PubMed  Google Scholar 

  16. Yasar Bilge NS et al (2018) Comparison of early versus late onset familial Mediterranean fever. Int J Rheum Dis 21:880–884. https://doi.org/10.1111/1756-185X.13259

    Article  CAS  PubMed  Google Scholar 

  17. Brenner R et al (2018) Familial Mediterranean fever and incidence of cancer: an analysis of 8,534 Israeli patients with 258,803 person-years. Arthritis Rheumatol 70:127–133. https://doi.org/10.1002/art.40344

    Article  PubMed  Google Scholar 

  18. Altunoglu A et al (2013) Phenotype 2 familial mediterranean fever: evaluation of 22 case series and review of the literature on phenotype 2 FMF. Ren Fail 35:226–230. https://doi.org/10.3109/0886022X.2012.745115

    Article  CAS  PubMed  Google Scholar 

  19. Lainka E et al (2009) Incidence of TNFRSF1A mutations in German children: epidemiological, clinical and genetic characteristics. Rheumatology (Oxford) 48:987–991. https://doi.org/10.1093/rheumatology/kep140

    Article  CAS  Google Scholar 

  20. Cudrici C, Deuitch N, Aksentijevich I (2020) Revisiting TNF receptor-associated periodic syndrome (TRAPS): current perspectives. Int J Mol Sci. https://doi.org/10.3390/ijms21093263

    Article  PubMed  PubMed Central  Google Scholar 

  21. Lachmann HJ et al (2014) The phenotype of TNF receptor-associated autoinflammatory syndrome (TRAPS) at presentation: a series of 158 cases from the Eurofever/EUROTRAPS international registry. Ann Rheum Dis 73:2160–2167. https://doi.org/10.1136/annrheumdis-2013-204184

    Article  CAS  PubMed  Google Scholar 

  22. Pelagatti MA et al (2011) Long-term clinical profile of children with the low-penetrance R92Q mutation of the TNFRSF1A gene. Arthritis Rheum 63:1141–1150. https://doi.org/10.1002/art.30237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ruiz-Ortiz E et al (2017) Disease phenotype and outcome depending on the age at disease onset in patients carrying the R92Q low-penetrance variant in TNFRSF1A gene. Front Immunol 8:299. https://doi.org/10.3389/fimmu.2017.00299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Poirier O et al (2004) Polymorphism R92Q of the tumour necrosis factor receptor 1 gene is associated with myocardial infarction and carotid intima-media thickness—the ECTIM, AXA, EVA and GENIC studies. Eur J Hum Genet 12:213–219. https://doi.org/10.1038/sj.ejhg.5201143

    Article  CAS  PubMed  Google Scholar 

  25. Caminero A, Comabella M, Montalban X (2011) Role of tumour necrosis factor (TNF)-alpha and TNFRSF1A R92Q mutation in the pathogenesis of TNF receptor-associated periodic syndrome and multiple sclerosis. Clin Exp Immunol 166:338–345. https://doi.org/10.1111/j.1365-2249.2011.04484.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Levy R et al (2015) Phenotypic and genotypic characteristics of cryopyrin-associated periodic syndrome: a series of 136 patients from the Eurofever registry. Ann Rheum Dis 74:2043–2049. https://doi.org/10.1136/annrheumdis-2013-204991

    Article  CAS  PubMed  Google Scholar 

  27. Vitale A, Lucherini OM, Galeazzi M, Frediani B, Cantarini L (2012) Long-term clinical course of patients carrying the Q703K mutation in the NLRP3 gene: a case series. Clin Exp Rheumatol 30:943–946

    PubMed  Google Scholar 

  28. Mensa-Vilaro A et al (2016) Brief report: late-onset cryopyrin-associated periodic syndrome due to myeloid-restricted somatic NLRP3 mosaicism. Arthritis Rheumatol 68:3035–3041. https://doi.org/10.1002/art.39770

    Article  CAS  PubMed  Google Scholar 

  29. Rowczenio DM et al (2017) Late-onset cryopyrin-associated periodic syndromes caused by somatic NLRP3 mosaicism-UK single center experience. Front Immunol 8:1410. https://doi.org/10.3389/fimmu.2017.01410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Brennenstuhl H et al (2021) Phenotypic diversity, disease progression, and pathogenicity of MVK missense variants in mevalonic aciduria. J Inherit Metab Dis. https://doi.org/10.1002/jimd.12412

    Article  PubMed  Google Scholar 

  31. Drenth JP et al (1999) Mutations in the gene encoding mevalonate kinase cause hyper-IgD and periodic fever syndrome. International hyper-IgD study group. Nat Genet 22:178–181. https://doi.org/10.1038/9696

    Article  CAS  PubMed  Google Scholar 

  32. Ter Haar NM et al (2016) The phenotype and genotype of mevalonate kinase deficiency: a series of 114 cases from the Eurofever registry. Arthritis Rheumatol 68:2795–2805. https://doi.org/10.1002/art.39763

    Article  CAS  PubMed  Google Scholar 

  33. Ozen S et al (2017) International retrospective chart review of treatment patterns in severe familial Mediterranean fever, tumor necrosis factor receptor-associated periodic syndrome, and mevalonate kinase deficiency/hyperimmunoglobulinemia D syndrome. Arthritis Care Res (Hoboken) 69:578–586. https://doi.org/10.1002/acr.23120

    Article  CAS  Google Scholar 

  34. Zhang S (2016) Natural history of mevalonate kinase deficiency: a literature review. Pediatr Rheumatol Online J 14:30. https://doi.org/10.1186/s12969-016-0091-7

    Article  PubMed  PubMed Central  Google Scholar 

  35. Navon Elkan P et al (2014) Mutant adenosine deaminase 2 in a polyarteritis nodosa vasculopathy. N Engl J Med 370:921–931. https://doi.org/10.1056/NEJMoa1307362

    Article  CAS  PubMed  Google Scholar 

  36. Zhou Q et al (2014) Early-onset stroke and vasculopathy associated with mutations in ADA2. N Engl J Med 370:911–920. https://doi.org/10.1056/NEJMoa1307361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lee PY (2018) Vasculopathy, immunodeficiency, and bone marrow failure: the intriguing syndrome caused by deficiency of adenosine deaminase 2. Front Pediatr 6:282. https://doi.org/10.3389/fped.2018.00282

    Article  PubMed  PubMed Central  Google Scholar 

  38. Zhang B et al (2021) Adult-onset deficiency of adenosine deaminase 2‑a case report and literature review. Clin Rheumatol. https://doi.org/10.1007/s10067-021-05587-w

    Article  PubMed  PubMed Central  Google Scholar 

  39. Pinto B, Deo P, Sharma S, Syal A, Sharma A (2021) Expanding spectrum of DADA2: a review of phenotypes, genetics, pathogenesis and treatment. Clin Rheumatol. https://doi.org/10.1007/s10067-021-05711-w

    Article  PubMed  Google Scholar 

  40. Ombrello AK et al (2019) Treatment strategies for deficiency of adenosine deaminase 2. N Engl J Med 380:1582–1584. https://doi.org/10.1056/NEJMc1801927

    Article  PubMed  PubMed Central  Google Scholar 

  41. Caorsi R, Penco F, Schena F, Gattorno M (2016) Monogenic polyarteritis: the lesson of ADA2 deficiency. Pediatr Rheumatol Online J 14:51. https://doi.org/10.1186/s12969-016-0111-7

    Article  PubMed  PubMed Central  Google Scholar 

  42. Rama M et al (2018) A decision tree for the genetic diagnosis of deficiency of adenosine deaminase 2 (DADA2): a French reference centres experience. Eur J Hum Genet 26:960–971. https://doi.org/10.1038/s41431-018-0130-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Schepp J et al (2017) Screening of 181 patients with antibody deficiency for deficiency of adenosine deaminase 2 sheds new light on the disease in adulthood. Arthritis Rheumatol 69:1689–1700. https://doi.org/10.1002/art.40147

    Article  CAS  PubMed  Google Scholar 

  44. Crow YJ (2011) Type I interferonopathies: a novel set of inborn errors of immunity. Ann N Y Acad Sci 1238:91–98. https://doi.org/10.1111/j.1749-6632.2011.06220.x

    Article  CAS  PubMed  Google Scholar 

  45. Rodero MP, Crow YJ (2016) Type I interferon-mediated monogenic autoinflammation: the type I interferonopathies, a conceptual overview. J Exp Med 213:2527–2538. https://doi.org/10.1084/jem.20161596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. de Jesus AA, Canna SW, Liu Y, Goldbach-Mansky R (2015) Molecular mechanisms in genetically defined autoinflammatory diseases: disorders of amplified danger signaling. Annu Rev Immunol 33:823–874. https://doi.org/10.1146/annurev-immunol-032414-112227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Feist E, Brehm A, Kallinich T, Kruger E (2017) Clinical aspects and genetics of proteasome-associated autoinflammatory syndromes (PRAAS). Z Rheumatol 76:328–334. https://doi.org/10.1007/s00393-017-0264-x

    Article  CAS  PubMed  Google Scholar 

  48. Zhang X et al (2015) Human intracellular ISG15 prevents interferon-alpha/beta over-amplification and auto-inflammation. Nature 517:89–93. https://doi.org/10.1038/nature13801

    Article  CAS  PubMed  Google Scholar 

  49. Watkin LB et al (2015) COPA mutations impair ER-Golgi transport and cause hereditary autoimmune-mediated lung disease and arthritis. Nat Genet 47:654–660. https://doi.org/10.1038/ng.3279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Liu Y et al (2014) Activated STING in a vascular and pulmonary syndrome. N Engl J Med 371:507–518. https://doi.org/10.1056/NEJMoa1312625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Dai Y, Liu X, Zhao Z, He J, Yin Q (2020) Stimulator of interferon genes-associated vasculopathy with onset in infancy: a systematic review of case reports. Front Pediatr 8:577918. https://doi.org/10.3389/fped.2020.577918

    Article  PubMed  PubMed Central  Google Scholar 

  52. Aicardi J, Goutieres F (1984) A progressive familial encephalopathy in infancy with calcifications of the basal ganglia and chronic cerebrospinal fluid lymphocytosis. Ann Neurol 15:49–54. https://doi.org/10.1002/ana.410150109

    Article  CAS  PubMed  Google Scholar 

  53. Crow YJ et al (2015) Characterization of human disease phenotypes associated with mutations in TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, ADAR, and IFIH1. Am J Med Genet A 167A:296–312. https://doi.org/10.1002/ajmg.a.36887

    Article  CAS  PubMed  Google Scholar 

  54. Staels F et al (2020) Adult-onset ANCA-associated vasculitis in SAVI: extension of the phenotypic spectrum, case report and review of the literature. Front Immunol 11:575219. https://doi.org/10.3389/fimmu.2020.575219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Jeremiah N et al (2014) Inherited STING-activating mutation underlies a familial inflammatory syndrome with lupus-like manifestations. J Clin Invest 124:5516–5520. https://doi.org/10.1172/JCI79100

    Article  PubMed  PubMed Central  Google Scholar 

  56. Picard C et al (2016) Severe pulmonary fibrosis as the first manifestation of interferonopathy (TMEM173 mutation). Chest 150:e65–71. https://doi.org/10.1016/j.chest.2016.02.682

    Article  PubMed  Google Scholar 

  57. Rice GI et al (2017) Genetic, phenotypic, and interferon biomarker status in ADAR1-related neurological disease. Neuropediatrics 48:166–184. https://doi.org/10.1055/s-0037-1601449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Namjou B et al (2011) Evaluation of the TREX1 gene in a large multi-ancestral lupus cohort. Genes Immun 12:270–279. https://doi.org/10.1038/gene.2010.73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Cantarini L, Vitale A, Bartolomei B, Galeazzi M, Rigante D (2012) Diagnosis of PFAPA syndrome applied to a cohort of 17 adults with unexplained recurrent fevers. Clin Exp Rheumatol 30:269–271

    PubMed  Google Scholar 

  60. Cantarini L et al (2017) Diagnostic criteria for adult-onset periodic fever, aphthous stomatitis, pharyngitis, and cervical adenitis (PFAPA) syndrome. Front Immunol 8:1018. https://doi.org/10.3389/fimmu.2017.01018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Sicignano LL et al (2021) Children and adults with PFAPA syndrome: similarities and divergences in a real-life clinical setting. Adv Ther 38:1078–1093. https://doi.org/10.1007/s12325-020-01576-8

    Article  CAS  PubMed  Google Scholar 

  62. Hofer M et al (2014) International periodic fever, aphthous stomatitis, pharyngitis, cervical adenitis syndrome cohort: description of distinct phenotypes in 301 patients. Rheumatology (Oxford) 53:1125–1129. https://doi.org/10.1093/rheumatology/ket460

    Article  Google Scholar 

  63. Beck DB et al (2020) Somatic mutations in UBA1 and severe adult-onset autoinflammatory disease. N Engl J Med 383:2628–2638. https://doi.org/10.1056/NEJMoa2026834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ferrada MA et al (2021) Somatic mutations in UBA1 define a distinct subset of relapsing polychondritis patients with VEXAS syndrome. Arthritis Rheumatol. https://doi.org/10.1002/art.41743

    Article  PubMed  Google Scholar 

  65. Tsuchida N et al (2021) Pathogenic UBA1 variants associated with VEXAS syndrome in Japanese patients with relapsing polychondritis. Ann Rheum Dis. https://doi.org/10.1136/annrheumdis-2021-220089

    Article  PubMed  Google Scholar 

  66. Arlet JB, Terrier B, Kosmider O (2021) Mutant UBA1 and severe adult-onset autoinflammatory disease. N Engl J Med 384:2163. https://doi.org/10.1056/NEJMc2102124

    Article  PubMed  Google Scholar 

  67. Simon A et al (2013) Schnitzler’s syndrome: diagnosis, treatment, and follow-up. Allergy 68:562–568. https://doi.org/10.1111/all.12129

    Article  CAS  PubMed  Google Scholar 

  68. Kacar M, Pathak S, Savic S (2019) Hereditary systemic autoinflammatory diseases and Schnitzler’s syndrome. Rheumatology (Oxford) 58:vi31–vi43. https://doi.org/10.1093/rheumatology/kez448

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tilmann Kallinich.

Ethics declarations

Interessenkonflikt

M. Krusche und T. Kallinich geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Redaktion

Hans-Iko Huppertz, Bremen

Hanns-Martin Lorenz, Heidelberg

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krusche, M., Kallinich, T. Autoinflammation – Unterschiede bei Kindern und Erwachsenen. Z Rheumatol 81, 45–54 (2022). https://doi.org/10.1007/s00393-021-01115-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00393-021-01115-y

Schlüsselwörter

Keywords

Navigation