Skip to main content

A network meta-analysis of randomized controlled trials comparing the effectiveness and safety of voclosporin or tacrolimus plus mycophenolate mofetil as induction treatment for lupus nephritis

Netzwerk-Metaanalyse randomisierter kontrollierter Studien zum Vergleich der Wirksamkeit und Sicherheit von Voclosporin oder Tacrolimus plus Mycophenolat-Mofetil als Induktionstherapie bei Lupusnephritis

Abstract

Aim

This study aimed to compare the effectiveness and safety of voclosporin + mycophenolate mofetil (MMF), tacrolimus + MMF, and monotherapy with MMF or cyclophosphamide as induction treatment for lupus nephritis.

Methods

The study included randomized controlled trials (RCTs) that evaluated the effectiveness and safety of voclosporin + MMF, tacrolimus + MMF, and monotherapy for induction treatment in patients with lupus nephritis. To incorporate direct and indirect evidence from RCTs, we used a Bayesian network meta-analysis.

Results

Four RCTs, including 936 participants, met the inclusion criteria. Tacrolimus + MMF substantially increased the incidence of complete remission relative to that following monotherapy (odds ratio [OR] 2.85; 95% credible interval [CrI] 1.87–4.39). Tacrolimus + MMF was also more effective than voclosporin + MMF (OR 1.43; 95% CrI 0.80–2.57). Tacrolimus + MMF showed the greatest chance of being the optimal treatment for overall response (surface under the cumulative ranking curve [SUCRA] = 0.942), followed by voclosporin + MMF (SUCRA = 0.558) and monotherapy (SUCRA = 0.001). In terms of safety based on severe event rates, monotherapy had the greatest chance of being the safest treatment (SUCRA = 0.903), followed by voclosporin + MMF (SUCRA = 0.517) and tacrolimus + MMF (SUCRA = 0.081).

Conclusion

Tacrolimus + MMF and voclosporin + MMF were more effective than monotherapy, and tacrolimus + MMF was the most effective induction treatment for lupus nephritis patients. However, tacrolimus + MMF did pose a greater risk of serious adverse events than monotherapy.

Zusammenfassung

Ziel der Arbeit

Ziel der vorliegenden Studie war es, die Wirksamkeit und Sicherheit von Voclosporin + Mycophenolat-Mofetil (MMF) zum einen, Tacrolimus + MMF zum anderen und einer Monotherapie mit MMF oder Cyclophosphamid als Induktionstherapie bei Lupusnephritis zu vergleichen.

Methoden

In die Studie wurden randomisierte kontrollierte Studien (RCT) einbezogen, in denen die Wirksamkeit und Sicherheit von Voclosporin + MMF, Tacrolimus + MMF und einer Monotherapie als Induktionstherapie bei Patienten mit Lupusnephritis verglichen wurde. Um direkte und indirekte Evidenz aus RCT zu erfassen, wurde eine Bayes-Netzwerk-Metaanalyse durchgeführt.

Ergebnisse

Von 4 RCT mit 936 Teilnehmern wurden die Einschlusskriterien erfüllt. Tacrolimus + MMF führten zu einer wesentlich erhöhten Inzidenz kompletter Remissionen im Verhältnis zur Situation nach Monotherapie (Odds Ratio [OR] 2,85; 95%-Glaubwürdigkeitsintervall, Credibility Interval [CrI] 1,87–4,39). Tacrolimus + MMF erwiesen sich auch als wirksamer denn Voclosporin + MMF (OR 1,43; 95%-CrI 0,80–2,57). Bei Tacrolimus + MMF bestand die höchste Wahrscheinlichkeit, die optimale Therapie in Bezug auf das Gesamtansprechen darzustellen (Oberfläche unter der kumulativen Ranking-Kurve [SUCRA] = 0,942), dann folgten Voclosporin + MMF (SUCRA = 0,558) und die Monotherapie (SUCRA = 0,001). In Hinsicht auf die Sicherheit, basierend auf der Rate schwerer unerwünschter Ereignisse, bestand die höchste Wahrscheinlichkeit, die sicherste Therapie darzustellen, für die Monotherapie (SUCRA = 0,903), dann folgten Voclosporin + MMF (SUCRA = 0,517) und Tacrolimus + MMF (SUCRA = 0,081).

Schlussfolgerung

Tacrolimus + MMF und Voclosporin + MMF waren wirksamer als die Monotherapie, und Tacrolimus + MMF erwies sich als die wirksamste Induktionstherapie bei Patienten mit Lupusnephritis. Allerdings war das Risiko schwerer unerwünschter Ereignisse unter Tacrolimus + MMF größer als unter Monotherapie.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Neumann K, Wallace DJ, Azen C, Nessim S, Fichman M, Metzger AL, Klinenberg JR (1995) Lupus in the 1980s: III. Influence of clinical variables, biopsy, and treatment on the outcome in 150 patients with lupus nephritis seen at a single center. Semin Arthritis Rheum 25:47–55

    CAS  Article  Google Scholar 

  2. 2.

    Appel GB, Contreras G, Dooley MA, Ginzler EM, Isenberg D, Jayne D, Li L‑S, Mysler E, Sanchez-Guerrero J, Solomons N (2009) Mycophenolate mofetil versus cyclophosphamide for induction treatment of lupus nephritis. J Am Soc Nephrol 20:1103–1112

    CAS  Article  Google Scholar 

  3. 3.

    Li X, Ren H, Zhang Q, Zhang W, Wu X, Xu Y, Shen P, Chen N (2012) Mycophenolate mofetil or tacrolimus compared with intravenous cyclophosphamide in the induction treatment for active lupus nephritis. Nephrol Dial Transplant 27:1467–1472

    CAS  Article  Google Scholar 

  4. 4.

    Sung-Eun C, Dong-Jin P, Ji-Hyoun K, Kyung-Eun L, Haimuzi X, Ji Shin L, Choi Y‑D, Shin-Seok L (2019) Comparison of renal responses to cyclophosphamide and mycophenolate mofetil used as induction therapies in Korean patients with lupus nephritis. J Rheum Dis 26:57–65

    Article  Google Scholar 

  5. 5.

    Touma Z, Gladman DD, Urowitz MB, Beyene J, Uleryk EM, Shah PS (2011) Mycophenolate mofetil for induction treatment of lupus nephritis: a systematic review and metaanalysis. J Rheumatol 38:69–78

    CAS  Article  Google Scholar 

  6. 6.

    Ayoub I, Rovin BH (2017) Calcineurin inhibitors in the treatment of lupus nephritis: a hare versus turtle story? J Am Soc Nephrol 28(12):3435–3437

    Article  Google Scholar 

  7. 7.

    Yo J, Barbour T, Nicholls K (2019) Management of refractory lupus nephritis: challenges and solutions. Open access rheumatology. Res Rev 11:179

    CAS  Google Scholar 

  8. 8.

    Shen X, Jiang H, Ying M, Xie Z, Li X, Wang H, Zhao J, Lin C, Wang Y et al (2016) Calcineurin inhibitors cyclosporin A and tacrolimus protect against podocyte injury induced by puromycin aminonucleoside in rodent models. Sci Rep 6:32087. https://doi.org/10.1038/srep32087

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Bertsias GK, Tektonidou M, Amoura Z, Aringer M, Bajema I, Berden JH, Boletis J, Cervera R, Dörner T et al (2012) Joint European league against rheumatism and European renal association—European dialysis and transplant association (EULAR/ERA-EDTA) recommendations for the management of adult and paediatric lupus nephritis. Ann Rheum Dis 71(11):1771–1782

    CAS  Article  Google Scholar 

  10. 10.

    van Gelder T, Huizinga RB, Lisk L, Solomons N (2021) Voclosporin: a novel calcineurin inhibitor with no impact on mycophenolic acid levels in patients with SLE. Nephrol Dial Transplant. https://doi.org/10.1093/ndt/gfab022

    Article  PubMed  Google Scholar 

  11. 11.

    Kino T, Hatanaka H, Miyata S et al (1987) FK-506, a novel immunosuppressant isolated from a streptomyces. II. Immunosuppressive effect of FK-506 in vitro. J Antibiot (Tokyo) 40:1256–1265

    CAS  Article  Google Scholar 

  12. 12.

    Rovin BH, Teng YO, Ginzler EM, Arriens C, Caster DJ, Romero-Diaz J, Gibson K, Kaplan J, Lisk L et al (2021) Efficacy and safety of voclosporin versus placebo for lupus nephritis (AURORA 1): a double-blind, randomised, multicentre, placebo-controlled, phase 3 trial. Lancet 397(10289):2070–2080. https://doi.org/10.1016/S0140-6736(21)00578-X

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Rovin BH, Solomons N, Pendergraft WF III, Dooley MA, Tumlin J, Romero-Diaz J, Lysenko L, Navarra SV, Huizinga RB et al (2019) A randomized, controlled double-blind study comparing the efficacy and safety of dose-ranging voclosporin with placebo in achieving remission in patients with active lupus nephritis. Kidney Int 95:219–231

    CAS  Article  Google Scholar 

  14. 14.

    Liu Z, Zhang H, Liu Z, Xing C, Fu P, Ni Z, Chen J, Lin H, Liu F et al (2015) Multitarget therapy for induction treatment of lupus nephritis: a randomized trial. Ann Intern Med 162(1):18–26. https://doi.org/10.7326/M14-1030

    Article  PubMed  Google Scholar 

  15. 15.

    Bao H, Liu Z‑H, Xie H‑L, Hu W‑X, Zhang H‑T et al (2008) Successful treatment of class V+ IV lupus nephritis with multitarget therapy. J Am Soc Nephrol 19(10):2001–2010

    CAS  Article  Google Scholar 

  16. 16.

    Lee YH (2018) An overview of meta-analysis for clinicians. Korean J Intern Med 33:277

    Article  Google Scholar 

  17. 17.

    Higgins JP, Altman DG, Gøtzsche PC, Jüni P, Moher D, Oxman AD, Savović J, Schulz KF, Weeks L, Sterne JA (2011) The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ. https://doi.org/10.1136/bmj.d5928

    Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Moher D, Liberati A, Tetzlaff J, Altman DG (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med 151:264–269

    Article  Google Scholar 

  19. 19.

    Brown S, Hutton B, Clifford T, Coyle D, Grima D, Wells G, Cameron C (2014) A Microsoft-Excel-based tool for running and critically appraising network meta-analyses—an overview and application of NetMetaXL. Syst Rev 3:110

    Article  Google Scholar 

  20. 20.

    Caldwell DM, Ades A, Higgins J (2005) Simultaneous comparison of multiple treatments: combining direct and indirect evidence. BMJ 331:897

    Article  Google Scholar 

  21. 21.

    Salanti G, Ades A, Ioannidis JP (2011) Graphical methods and numerical summaries for presenting results from multiple-treatment meta-analysis: an overview and tutorial. J Clin Epidemiol 64:163–171

    Article  Google Scholar 

  22. 22.

    Dias S, Welton NJ, Sutton AJ, Caldwell DM, Lu G, Ades A (2013) Evidence synthesis for decision making 4 inconsistency in networks of evidence based on randomized controlled trials. Med Decis Making 33:641–656

    Article  Google Scholar 

  23. 23.

    Higgins J, Jackson D, Barrett J, Lu G, Ades A, White I (2012) Consistency and inconsistency in network meta-analysis: concepts and models for multi-arm studies. Res Synth Methods 3:98–110

    CAS  Article  Google Scholar 

  24. 24.

    Valkenhoef G, Lu G, Brock B, Hillege H, Ades A, Welton NJ (2012) Automating network meta-analysis. Res Synth Methods 3:285–299

    Article  Google Scholar 

  25. 25.

    Touma Z, Gladman DD, Urowitz MB, Beyene J, Uleryk EM et al (2011) Mycophenolate mofetil for induction treatment of lupus nephritis: a systematic review and metaanalysis. J Rheumatol 38(1):69–78. https://doi.org/10.3899/jrheum.100130

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Pan L, Lu M‑P, Wang J‑H, Xu M, Yang S‑R (2020) Immunological pathogenesis and treatment of systemic lupus erythematosus. World J Pediatr 16:19–30

    Article  Google Scholar 

  27. 27.

    Liossis SN, Staveri C (2021) What’s new in the treatment of systemic lupus erythematosus. Front Med 8:221

    Article  Google Scholar 

  28. 28.

    Naesens M, Kuypers DR et al (2009) Calcineurin inhibitor nephrotoxicity. Clin J Am Soc Nephrol 4(2):481–508. https://doi.org/10.2215/CJN.04800908

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Liao R, Liu Q, Zheng Z, Fan J, Peng W, Kong Q, He H, Yang S, Chen W et al (2015) Tacrolimus protects podocytes from injury in lupus nephritis partly by stabilizing the cytoskeleton and inhibiting podocyte apoptosis. PLoS ONE 10(7):e132724. https://doi.org/10.1371/journal.pone.0132724

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Mohan S, Radhakrishnan J (2011) Geographical variation in the response of lupus nephritis to mycophenolate mofetil induction therapy. Clin Nephrol 75:233–241

    CAS  Article  Google Scholar 

  31. 31.

    Lee YH, Song GG (2019) Causal association between rheumatoid arthritis with the increased risk of type 2 diabetes: a mendelian randomization analysis. J Rheum Dis 26:131–136

    Article  Google Scholar 

  32. 32.

    Lee YH, Song GG (2020) Circulating interleukin-18 level in systemic lupus erythematosus. J Rheum Dis 27:110–115

    Article  Google Scholar 

  33. 33.

    Lee YH, Song GG (2020) Association between signal transducers and activators of transcription 4 rs7574865 polymorphism and systemic lupus erythematosus: a meta-analysis. J Rheum Dis 27:277–284

    Article  Google Scholar 

  34. 34.

    Lee YH, Song GG (2020) Circulating interleukin-37 levels in rheumatoid arthritis and systemic lupus erythematosus and their correlations with disease activity: a meta-analysis. J Rheum Dis 27:152–158

    Article  Google Scholar 

  35. 35.

    Lee YH, Song GG (2020) Associations between circulating Interleukin-17 levels and systemic lupus erythematosus and between Interleukin-17 gene polymorphisms and disease susceptibility: a meta-analysis. J Rheum Dis 27:37–44

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Young Ho Lee MD, PhD.

Ethics declarations

Conflict of interest

Y.H. Lee and G.G. Song declare that they have no competing interests.

For this article no studies with human participants or animals were performed by any of the authors. All studies performed were in accordance with the ethical standards indicated in each case.

Additional information

figureqr

Scan QR code & read article online

Redaktion

Ulf Müller-Ladner, Bad Nauheim

Uwe Lange, Bad Nauheim

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lee, Y.H., Song, G.G. A network meta-analysis of randomized controlled trials comparing the effectiveness and safety of voclosporin or tacrolimus plus mycophenolate mofetil as induction treatment for lupus nephritis. Z Rheumatol (2021). https://doi.org/10.1007/s00393-021-01087-z

Download citation

Keywords

  • Tacrolimus
  • Voclosporin
  • Mycophenolate mofetil
  • Cyclophosphamide
  • Lupus nephritis

Schlüsselwörter

  • Tacrolimus
  • Voclosporin
  • Mycophenolat-Mofetil
  • Cyclophosphamid
  • Lupusnephritis