Skip to main content

Comparative efficacy and safety of tofacitinib, baricitinib, upadacitinib, and filgotinib in active rheumatoid arthritis refractory to biologic disease-modifying antirheumatic drugs

Relative Wirksamkeit und Sicherheit von Tofacitinib, Baricitinib, Upadacitinib und Filgotinib bei aktiver rheumatoider Arthritis mit Refraktärität gegen biologische krankheitsmodifizierende Antirheumatika

Abstract

Objective

The relative efficacy and tolerability of tofacitinib, baricitinib, upadacitinib, and filgotinib were assessed in patients with rheumatoid arthritis (RA) with inadequate responses to biologic disease-modifying antirheumatic drugs (bDMARDs).

Methods

We performed a Bayesian network meta-analysis to combine direct and indirect evidence from randomized controlled trials (RCTs) to examine the efficacy and safety of tofacitinib, baricitinib, upadacitinib, and filgotinib in RA patients with inadequate responses to bDMARDs.

Results

Four RCTs comprising 1399 patients met the inclusion criteria. Tofacitinib, baricitinib, upadacitinib, and filgotinib achieved significant American College of Rheumatology 20% (ACR20) responses versus placebo. The ranking probability based on the surface under the cumulative ranking curve (SUCRA) indicated that upadacitinib 15 mg had the highest probability of being the best treatment for achieving the ACR20 response rate, followed by filgotinib 200 mg, baricitinib 4 mg, filgotinib 100 mg, tofacitinib 5 mg, and placebo. The ranking in SUCRA based on the ACR50 response rate indicated that baricitinib 4 mg had the highest probability of achieving the ACR50 response rate, followed by filgotinib 200 mg, tofacitinib 5 mg, upadacitinib 15 mg, filgotinib 100 mg, and placebo. Tofacitinib 5 mg showed a significantly higher ACR70 response rate than filgotinib 100 mg and upadacitinib 15 mg. Tofacitinib 5 mg, filgotinib 200 mg, and placebo showed a significantly lower serious adverse event rate than upadacitinib 15 mg.

Conclusion

Tofacitinib, baricitinib, upadacitinib, and filgotinib were effective treatment options for RA patients with an inadequate response to bDMARDs but with different efficacy and safety profiles.

Zusammenfassung

Ziel

Bei Patienten mit rheumatoider Arthritis (RA) und inadäquater Reaktion auf biologische krankheitsmodizifierende Antirheumatika (bDMARD) wurde die relative Wirksamkeit und Verträglichkeit von Tofacitinib, Baricitinib, Upadacitinib und Filgotinib ermittelt.

Methoden

Eine Bayes-Netzwerk-Metaanalyse wurde durchgeführt, um direkte und indirekte Evidenz aus randomisierten kontrollierten Studien (RCT) zu kombinieren und so die Wirksamkeit und Sicherheit von Tofacitinib, Baricitinib, Upadacitinib und Filgotinib bei RA-Patienten mit inadäquatem Ansprechen auf bDMARD zu untersuchen.

Ergebnisse

Die Einschlusskriterien wurden von 4 RCT mit 1399 Patienten erfüllt. Unter Tofacitinib, Baricitinib, Upadacitinib und Filgotinib zeigte sich eine signifikant höhere ACR20-Ansprechrate (gemäß American College of Rheumatology) als unter Placebo. Wie die Rangfolgewahrscheinlichkeit, basierend auf der Oberfläche unter der kumulativen Rangfolgenkurve (SUCRA, „surface under the cumulative ranking curve“), ergab, stellte Upadacitinib 15 mg mit größter Wahrscheinlichkeit die beste Behandlung zur Erzielung der ACR20-Ansprechrate dar, es folgten Filgotinib 200 mg, Baricitinib 4 mg, Filgotinib 100 mg, Tofacitinib 5 mg und Placebo. Die auf der ACR50-Ansprechrate basierende SUCRA-Rangfolge zeigte, dass für Baricitinib 4 mg die höchste Wahrscheinlichkeit bestand, die ACR50-Ansprechrate zu erzielen, es folgten Filgotinib 200 mg, Tofacitinib 5 mg, Upadacitinib 15 mg, Filgotinib 100 mg und Placebo. Tofacitinib 5 mg wies eine signifikant höhere ACR70-Ansprechrate auf als Filgotinib 100 mg und Upadacitinib 15 mg. Für Tofacitinib 5 mg, Filgotinib 200 mg und Placebo zeigte sich eine signifikant niedrigere Rate schwerer unerwünschter Ereignisse als für Upadacitinib 15 mg.

Schlussfolgerung

Für RA-Patienten mit inadäquater Reaktion auf bDMARD erwiesen sich Tofacitinib, Baricitinib, Upadacitinib und Filgotinib als wirksame Therapieoptionen, jedoch mit unterschiedlichen Wirksamkeits- und Sicherheitsprofilen.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4a
Fig. 4b
Fig. 5

References

  1. Smolen JS, Aletaha D, McInnes IB (2016) Rheumatoid arthritis. Lancet. https://doi.org/10.1016/s0140-6736(16)30173-8

    Article  PubMed  Google Scholar 

  2. Felson DT, Anderson JJ, Meenan RF (1990) The comparative efficacy and toxicity of second-line drugs in rheumatoid arthritis. Results of two metaanalyses. Arthritis Rheum 33:1449–1461

    Article  CAS  PubMed  Google Scholar 

  3. Kremer JM (2004) Toward a better understanding of methotrexate. Arthritis Rheum 50:1370–1382

    Article  CAS  PubMed  Google Scholar 

  4. Aletaha D, Smolen JS (2002) The rheumatoid arthritis patient in the clinic: comparing more than 1,300 consecutive DMARD courses. Rheumatology (Oxford) 41:1367–1374

    Article  CAS  Google Scholar 

  5. Lipsky P, van der Heijde D, St Clair E, Furst D, Breedveld F, Kalden J, Smolen J, Weisman M, Emery P, Feldmann M (2000) Infliximab and methotrexate in the treatment of rheumatoid arthritis. Anti-tumor necrosis factor trial in rheumatoid arthritis with concomitant therapy study group. N Engl J Med 343:1594–1602

    Article  CAS  PubMed  Google Scholar 

  6. Rendas-Baum R, Wallenstein GV, Koncz T, Kosinski M, Yang M, Bradley J, Zwillich SH (2011) Evaluating the efficacy of sequential biologic therapies for rheumatoid arthritis patients with an inadequate response to tumor necrosis factor‑α inhibitors. Arthritis Res Ther 13:R25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ghoreschi K, Laurence A, O’Shea JJ (2009) Janus kinases in immune cell signaling. Immunol Rev 228:273–287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Roskoski R Jr (2016) Janus kinase (JAK) inhibitors in the treatment of inflammatory and neoplastic diseases. Pharmacol Res 111:784–803

    Article  CAS  PubMed  Google Scholar 

  9. Chrencik JE, Patny A, Leung IK et al (2010) Structural and thermodynamic characterization of the TYK2 and JAK3 kinase domains in complex with CP-690550 and CMP‑6. J Mol Biol 400:413–433

    Article  CAS  PubMed  Google Scholar 

  10. Meyer DM, Jesson MI, Li X et al (2010) Anti-inflammatory activity and neutrophil reductions mediated by the JAK1/JAK3 inhibitor, CP-690,550, in rat adjuvant-induced arthritis. J Inflamm (Lond) 7:41

    Article  Google Scholar 

  11. Shi JG, Chen X, Lee F, Emm T, Scherle PA, Lo Y, Punwani N, Williams WV, Yeleswaram S (2014) The pharmacokinetics, pharmacodynamics, and safety of baricitinib, an oral JAK 1/2 inhibitor, in healthy volunteers. J Clin Pharmacol 54:1354–1361

    Article  CAS  PubMed  Google Scholar 

  12. Nakase T, Wada H, Minamikawa K et al (1994) Increased activated protein C‑protein C inhibitor complex level in patients positive for lupus anticoagulant. Blood Coagul Fibrinolysis 5:173–177

    Article  CAS  PubMed  Google Scholar 

  13. Burmester GR, Blanco R, Charles-Schoeman C, Wollenhaupt J, Zerbini C, Benda B, Gruben D, Wallenstein G, Krishnaswami S, Zwillich SH (2013) Tofacitinib (CP-690,550) in combination with methotrexate in patients with active rheumatoid arthritis with an inadequate response to tumour necrosis factor inhibitors: a randomised phase 3 trial. Lancet 381:451–460

    Article  CAS  PubMed  Google Scholar 

  14. Genovese MC, Kremer J, Zamani O et al (2016) Baricitinib in patients with refractory rheumatoid arthritis. N Engl J Med 374:1243–1252

    Article  CAS  PubMed  Google Scholar 

  15. Genovese MC, Fleischmann R, Combe B, Hall S, Rubbert-Roth A, Zhang Y, Zhou Y, Mohamed M‑EF, Meerwein S, Pangan AL (2018) Safety and efficacy of upadacitinib in patients with active rheumatoid arthritis refractory to biologic disease-modifying anti-rheumatic drugs (SELECT-BEYOND): a double-blind, randomised controlled phase 3 trial. Lancet 391:2513–2524

    Article  CAS  PubMed  Google Scholar 

  16. Genovese MC, Kalunian K, Gottenberg J‑E, Mozaffarian N, Bartok B, Matzkies F, Gao J, Guo Y, Tasset C, Sundy JS (2019) Effect of filgotinib vs placebo on clinical response in patients with moderate to severe rheumatoid arthritis refractory to disease-modifying antirheumatic drug therapy: the FINCH 2 randomized clinical trial. JAMA 322:315–325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fleischmann R, Mysler E, Hall S, Kivitz AJ, Moots RJ, Luo Z, DeMasi R, Soma K, Zhang R, Takiya LJTL (2017) Efficacy and safety of tofacitinib monotherapy, tofacitinib with methotrexate, and adalimumab with methotrexate in patients with rheumatoid arthritis (ORAL Strategy): a phase 3b/4, double-blind, head-to-head, randomised controlled trial. Lancet 390:457–468

    Article  CAS  PubMed  Google Scholar 

  18. Taylor PC, Keystone EC, van der Heijde D et al (2017) Baricitinib versus placebo or adalimumab in rheumatoid arthritis. N Engl J Med 376:652–662

    Article  CAS  PubMed  Google Scholar 

  19. Fleischmann R, Pangan AL, Mysler E, Bessette L, Peterfy C, Durez P, Ostor A, Li Y, Zhou Y, Othman AA (2018) A phase 3, randomized, double-blind study comparing upadacitinib to placebo and to adalimumab, in patients with active rheumatoid arthritis with inadequate response to methotrexate. Arthritis & rheumatology. John Wiley & Sons Inc., Hoboken

    Google Scholar 

  20. Combe B, Kivitz A, Tanaka Y, van der Heijde D, Matzkies F, Bartok B, Ye L, Guo Y, Tasset C, Sundy J (2019) LB0001 efficacy and safety of filgotinib for patients with rheumatoid arthritis with inadequate response to Methotrexate: FINCH1 primary outcome results. BMJ, London

    Google Scholar 

  21. Lee YH, Song GG (2019) Causal association between rheumatoid arthritis with the increased risk of type 2 diabetes: a mendelian randomization analysis. J Rheum Dis 26:131–136

    Article  Google Scholar 

  22. Lee YH, Bae S‑C, Choi SJ, Ji JD, Song GG (2012) Associations between TNFAIP3 gene polymorphisms and rheumatoid arthritis: a meta-analysis. Inflamm Res 61:635–641

    Article  CAS  PubMed  Google Scholar 

  23. Song GG, Choi SJ, Ji JD, Lee YH (2013) Association between tumor necrosis factor‑α promoter- 308 A/G,- 238 A/G, interleukin-6- 174 G/C and- 572 G/C polymorphisms and periodontal disease: a meta-analysis. Mol Biol Rep 40:5191–5203

    Article  CAS  PubMed  Google Scholar 

  24. Hochberg MC, Chang RW, Dwosh I, Lindsey S, Pincus T, Wolfe F (1992) The American college of rheumatology 1991 revised criteria for the classification of global functional status in rheumatoid arthritis. Arthritis Rheum 35:498–502

    Article  CAS  PubMed  Google Scholar 

  25. Aletaha D, Landewe R, Karonitsch T, Bathon J, Boers M, Bombardier C, Bombardieri S, Choi H, Combe B, Dougados M (2008) Reporting disease activity in clinical trials of patients with rheumatoid arthritis: EULAR/ACR collaborative recommendations. Arthritis Care Res 59:1371–1377

    Article  CAS  Google Scholar 

  26. Jadad AR, Moore RA, Carroll D, Jenkinson C, Reynolds DJM, Gavaghan DJ, McQuay HJ (1996) Assessing the quality of reports of randomized clinical trials: is blinding necessary? Control Clin Trials 17:1–12

    Article  CAS  PubMed  Google Scholar 

  27. Moher D, Liberati A, Tetzlaff J, Altman DG (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med 151:264–269

    Article  PubMed  Google Scholar 

  28. Brown S, Hutton B, Clifford T, Coyle D, Grima D, Wells G, Cameron C (2014) A Microsoft-Excel-based tool for running and critically appraising network meta-analyses—an overview and application of NetMetaXL. Syst Rev 3:110

    Article  PubMed  PubMed Central  Google Scholar 

  29. Caldwell DM, Ades A, Higgins J (2005) Simultaneous comparison of multiple treatments: combining direct and indirect evidence. BMJ 331:897

    Article  PubMed  PubMed Central  Google Scholar 

  30. Salanti G, Ades A, Ioannidis JP (2011) Graphical methods and numerical summaries for presenting results from multiple-treatment meta-analysis: an overview and tutorial. J Clin Epidemiol 64:163–171

    Article  PubMed  Google Scholar 

  31. Dias S, Welton NJ, Sutton AJ, Caldwell DM, Lu G, Ades A (2013) Evidence synthesis for decision making 4 inconsistency in networks of evidence based on randomized controlled trials. Med Decis Making 33:641–656

    Article  PubMed  PubMed Central  Google Scholar 

  32. Higgins J, Jackson D, Barrett J, Lu G, Ades A, White I (2012) Consistency and inconsistency in network meta-analysis: concepts and models for multi-arm studies. Res Synth Methods 3:98–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Valkenhoef G, Lu G, Brock B, Hillege H, Ades A, Welton NJ (2012) Automating network meta-analysis. Res Synth Methods 3:285–299

    Article  PubMed  Google Scholar 

  34. Valentine JC, Pigott TD, Rothstein HR (2010) How many studies do you need? A primer on statistical power for meta-analysis. J Educ Behav Stat 35:215–247

    Article  Google Scholar 

  35. Ward MM, Guthrie LC, Alba MI (2014) Brief report: rheumatoid arthritis response criteria and patient-reported improvement in arthritis activity: is an American college of rheumatology twenty percent response meaningful to patients? Arthritis Rheumatol 66:2339–2343

    Article  PubMed  PubMed Central  Google Scholar 

  36. Ward MM, Guthrie LC, Alba MI (2015) Clinically important changes in individual and composite measures of rheumatoid arthritis activity: thresholds applicable in clinical trials. Ann Rheum Dis 74:1691–1696

    Article  PubMed  Google Scholar 

  37. Bae SC, Lee YH (2019) Comparison of the efficacy and safety of tofacitinib and baricitinib in patients with active rheumatoid arthritis: a Bayesian network meta-analysis of randomized controlled trials. Z Rheumatol 78:559–567

    Article  CAS  PubMed  Google Scholar 

  38. Catalá-López F, Tobías A, Cameron C, Moher D, Hutton B (2014) Network meta-analysis for comparing treatment effects of multiple interventions: an introduction. Rheumatol Int 34:1489–1496

    Article  PubMed  Google Scholar 

  39. Song GG, Bae S‑C, Lee YH (2014) Association of the MTHFR C677T and A1298C polymorphisms with methotrexate toxicity in rheumatoid arthritis: a meta-analysis. Clin Rheumatol 33:1715–1724

    Article  PubMed  Google Scholar 

  40. Lee YH, Bae SC, Song GG (2011) The efficacy and safety of rituximab for the treatment of active rheumatoid arthritis: a systematic review and meta-analysis of randomized controlled trials. Rheumatol Int 31:1493–1499

    Article  CAS  PubMed  Google Scholar 

  41. Lee YH, Bae SC, Choi SJ, Ji JD, Song GG (2012) Associations between interleukin-10 polymorphisms and susceptibility to rheumatoid arthritis: a meta-analysis. Mol Biol Rep 39:81–87

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research received no specific grants from any public, commercial, or not-for-profit sector funding agencies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. H. Lee MD, PhD.

Ethics declarations

Conflict of interest

Y.H. Lee and G.G. Song declare that they have no competing interests.

For this article no studies with human participants or animals were performed by any of the authors. All studies performed were in accordance with the ethical standards indicated in each case.

Additional information

Redaktion

U. Müller-Ladner, Bad Nauheim

U. Lange, Bad Nauheim

Caption Electronic Supplementary Material

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, Y.H., Song, G.G. Comparative efficacy and safety of tofacitinib, baricitinib, upadacitinib, and filgotinib in active rheumatoid arthritis refractory to biologic disease-modifying antirheumatic drugs. Z Rheumatol 80, 379–392 (2021). https://doi.org/10.1007/s00393-020-00796-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00393-020-00796-1

Keywords

Schlüsselwörter