Skip to main content

Advertisement

Log in

Autoinflammatorische Syndrome und Amyloid-A-Amyloidose

Autoinflammatory syndromes and AA amyloidosis

  • Leitthema
  • Published:
Zeitschrift für Rheumatologie Aims and scope Submit manuscript

Zusammenfassung

Autoinflammatorische Syndrome (AIS) sind charakterisiert durch gleichförmige Attacken mit häufigen Fieberepisoden, Exanthemen, Bauchschmerzen, Muskel- und Gelenkschmerzen. Während einer Attacke zeigen sich oft massiv erhöhte serologische Entzündungsparameter CRP (C-reaktives Protein) und SAA (Serumamyloid A). Die Herkunft der Familie der Patienten und die Dauer der Attacken sind bei der Diagnosestellung hilfreich. Molekulargenetische Untersuchungen werden zur Bestätigung der klinischen AIS-Diagnose eingesetzt. Colchicin kann die Attacken beim familiären Mittelmeerfieber, aber nicht bei den anderen AIS verhindern. In refraktären Fällen werden Anakinra oder Canakinumab zur Kontrolle der Entzündungsschübe eingesetzt. Die systemische AA(Amyloid A)-Amyloidose kann sich bei jeder unzureichend behandelten chronisch entzündlichen Erkrankung im Verlauf entwickeln. Die Nierenbeteiligung ist die vorherrschende initiale Organmanifestation, die durch eine frühzeitige Evaluation einer Proteinurie identifiziert werden kann. Falls die AA-Amyloidose frühzeitig diagnostiziert und erfolgreich therapiert wird, kann die Funktion der Nieren und der anderen Organe über viele Jahre anhaltend stabil bleiben. Bei Patienten mit einer fortgeschrittenen AA-Amyloidose ist eine dialysepflichtige Niereninsuffizienz häufig nicht mehr zu verhindern. Diese Patienten sollten behandelt werden, um eine Beteiligung von Magen, Darm und Herz zu verhindern.

Abstract

Autoinflammatory syndromes (AIS) are characterized by uniform attacks often with febrile episodes, exanthema, abdominal pain, muscle and joint pain. Patients show markedly elevated levels of the inflammatory serum parameters C‑reactive protein (CRP) and systemic amyloid A (SAA) during an attack. The origin of the family of the patient and the duration of the attacks are helpful to find the appropriate diagnosis. Molecular genetic tests are used to confirm the clinical diagnosis of an AIS. Colchicine can prevent attacks of familial Mediterranean fever but not the other forms of AIS. In refractory cases anakinra or canakinumab can be used to control the inflammatory exacerbations. Systemic AA amyloidosis can develop secondary to any insufficiently treated chronic inflammatory disease. Renal involvement is the predominant initial organ dysfunction, which can be detected early on by the evaluation of proteinuria. If AA amyloidosis can be diagnosed early and successfully treated, the renal function and the function of other organs can be preserved for many years. In patients with advanced AA amyloidosis renal failure with the subsequent necessity for dialysis can often no longer be prevented. These patients should be treated to prevent involvement of the stomach, intestines and heart.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. Ozen S, Bilginer Y (2014) A clinical guide to autoinflammatory diseases: familial Mediterranean fever and next-of-kin. Nat Rev Rheumatol 10:135–147

    CAS  PubMed  Google Scholar 

  2. Sag E, Bilginer Y, Ozen S (2017) Autoinflammatory diseases with periodic fevers. Curr Rheumatol Rep 19(7):41

    PubMed  Google Scholar 

  3. McGonagle D, McDermott MF (2006) A proposed classification of the immunological diseases. PLoS Med 3:e297

    PubMed  PubMed Central  Google Scholar 

  4. Tunca M, Akar S, Onen F et al (2005) Familial Mediterranean fever (FMF) in Turkey: results of a nationwide multicenter study. Medicine 84(1):1–11

    Google Scholar 

  5. Sohar E, Gafni J, Pras M et al (1967) Familial Mediterranean fever. A survey of 470 cases and review of the literature. Am J Med 43(2):227–253

    CAS  PubMed  Google Scholar 

  6. Ozen S, Demirkaya E, Erer B et al (2016) EULAR recommendations for the management of familial Mediterranean fever. Ann Rheum Dis 75(4):644–651

    CAS  PubMed  Google Scholar 

  7. Ben-Zvi I, Kukuy O, Giat E et al (2017) Anakinra for colchicine-resistant familial Mediterranean fever: a randomized, double-blind, placebo-controlled trial. Arthritis Rheumatol 69(4):854–862

    CAS  PubMed  Google Scholar 

  8. Pecher AC, Igney-Oertel A, Kanz L et al (2017) Treatment of familial Mediterranean fever with anakinra in patients unresponsive to colchicine. Scand J Rheumatol 46(5):407–409

    CAS  PubMed  Google Scholar 

  9. Köhler BM, Lorenz HM, Blank N (2018) IL1-blocking therapy in colchicine-resistant familial Mediterranean fever. Eur J Rheumatol 5(4):230–234

    PubMed  PubMed Central  Google Scholar 

  10. De Benedetti F, Gattorno M, Anton J et al (2018) Canakinumab for the treatment of autoinflammatory recurrent fever syndromes. N Engl J Med 378(20):1908–1919

    PubMed  Google Scholar 

  11. Williamson LM, Hull D, Mehta R et al (1982) Familial Hibernian fever. Q J Med 51:469–480

    CAS  PubMed  Google Scholar 

  12. Lachmann HJ, Papa R, Gerhold K et al (2014) The phenotype of TNF receptor-associated autoinflammatory syndrome (TRAPS) at presentation: a series of 158 cases from the Eurofever/EUROTRAPS international registry. Ann Rheum Dis 73(12):2160–2167

    CAS  PubMed  Google Scholar 

  13. Aksentijevich I, Galon J, Soares M (2001) The tumor-necrosis-factor receptor-associated periodic syndrome: new mutations in TNFRSF1A, ancestral origins, genotype-phenotype studies, and evidence for further genetic heterogeneity of periodic fevers. Am J Hum Genet 69(2):301–314

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Rowczenio DM, Trojer H, Omoyinmi E et al (2016) Brief report: association of tumor necrosis factor receptor-associated periodic syndrome with gonosomal mosaicism of a novel 24-Nucleotide TNFRSF1A deletion. Arthritis Rheumatol 68(8):2044–2049

    CAS  PubMed  Google Scholar 

  15. Obici L, Meini A, Cattalini M et al (2011) Favourable and sustained response to anakinra in tumour necrosis factor receptor-associated periodic syndrome (TRAPS) with or without AA amyloidosis. Ann Rheum Dis 70(8):1511–1512

    CAS  PubMed  Google Scholar 

  16. Hoffman HM, Mueller JL, Broide DH et al (2001) Mutation of a new gene encoding a putative pyrin-like protein causes familial cold autoinflammatory syndrome and Muckle-Wells syndrome. Nat Genet 29(3):301–305

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Levy R, Gérard L, Kuemmerle-Deschner J et al (2015) Phenotypic and genotypic characteristics of cryopyrin-associated periodic syndrome: a series of 136 patients from the Eurofever Registry. Ann Rheum Dis 74(11):2043–2049

    CAS  PubMed  Google Scholar 

  18. Rowczenio DM, Gomes SM, Aróstegui JI et al (2017) Late-onset cryopyrin-associated periodic syndromes caused by somatic NLRP3 mosaicism-UK single center experience. Front Immunol 8:1410

    PubMed  PubMed Central  Google Scholar 

  19. Lachmann HJ, Lowe P, Felix SD (2009) In vivo regulation of interleukin 1beta in patients with cryopyrin-associated periodic syndromes. J Exp Med 206(5):1029–1036

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Lachmann HJ, Kone-Paut I, Kuemmerle-Deschner JB et al (2009) Use of canakinumab in the cryopyrin-associated periodic syndrome. N Engl J Med 360(23):2416–2425

    CAS  PubMed  Google Scholar 

  21. Caorsi R, Lepore L, Zulian F et al (2013) The schedule of administration of canakinumab in cryopyrin associated periodic syndrome is driven by the phenotype severity rather than the age. Arthritis Res Ther 15(1):R33

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Hoffmann G, Gibson KM, Brandt IK et al (1986) Mevalonic aciduria—an inborn error of cholesterol and nonsterol isoprene biosynthesis. N Engl J Med 314(25):1610–1614

    CAS  PubMed  Google Scholar 

  23. Drenth JP, Haagsma CJ, van der Meer JW (1994) Hyperimmunoglobulinemia D and periodic fever syndrome. The clinical spectrum in a series of 50 patients. International Hyper-IgD Study Group. Medicine 73(3):133–144

    CAS  PubMed  Google Scholar 

  24. Durel CA, Aouba A, Bienvenu B et al (2016) Observational study of a French and Belgian multicenter cohort of 23 patients diagnosed in adulthood with mevalonate kinase deficiency. Medicine 95(11):e3027

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Ter Haar NM, Jeyaratnam J, Lachmann HJ (2016) The phenotype and genotype of mevalonate kinase deficiency: a series of 114 cases from the Eurofever registry. Arthritis Rheumatol 68(11):2795–2805

    CAS  PubMed  Google Scholar 

  26. Rafiq NK, Lachmann H, Joensen F et al (2018) Tocilizumab for the treatment of mevalonate kinase deficiency. Case Rep Pediatr 2018:3514645

    PubMed  PubMed Central  Google Scholar 

  27. Shendi HM, Devlin LA, Edgar JD (2014) Interleukin 6 blockade for hyperimmunoglobulin D and periodic fever syndrome. J Clin Rheumatol 20(2):103–105

    PubMed  Google Scholar 

  28. Lipsker D (2010) The Schnitzler syndrome. Orphanet J Rare Dis 5:38

    PubMed  PubMed Central  Google Scholar 

  29. de Koning HD, Bodar EJ, van der Meer JW (2007) Schnitzler syndrome: beyond the case reports: review and follow-up of 94 patients with an emphasis on prognosis and treatment. Semin Arthritis Rheum 37(3):137–148

    PubMed  Google Scholar 

  30. Néel A, Henry B, Barbarot S et al (2014) Long-term effectiveness and safety of interleukin‑1 receptor antagonist (anakinra) in Schnitzler’s syndrome: a French multicenter study. Autoimmun Rev 13(10):1035–1041

    PubMed  Google Scholar 

  31. Still GF (1897) On a form of chronic joint disease in children. Med Chir Trans 80:47–60

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Bywaters EG (1971) Still’s disease in the adult. Ann Rheum Dis 30(2):121–133

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Petty RE, Southwood TR, Manners P et al (2004) International league of associations for rheumatology classification of juvenile idiopathic arthritis: second revision, Edmonton, 2001. J Rheumatol 31(2):390–392

    PubMed  Google Scholar 

  34. Yamaguchi M, Ohta A, Tsunematsu T et al (1992) Preliminary criteria for classification of adult Still’s disease. J Rheumatol 19:424–430

    CAS  PubMed  Google Scholar 

  35. Schuchmann L, Michels H, Renaud M et al (1981) Amyloidosis—a dreaded complication of juvenile chronic arthritis (JCA). Klin Padiatr 193(2):67–72

    CAS  PubMed  Google Scholar 

  36. Immonen K, Finne P, Grönhagen-Riska C et al (2011) A marked decline in the incidence of renal replacement therapy for amyloidosis associated with inflammatory rheumatic diseases—data from nationwide registries in Finland. Amyloid 18(1):25–28

    PubMed  Google Scholar 

  37. Horneff G, Schulz AC, Klotsche J (2017) Experience with etanercept, tocilizumab and interleukin‑1 inhibitors in systemic onset juvenile idiopathic arthritis patients from the BIKER registry. Arthritis Res Ther 19(1):256

    PubMed  PubMed Central  Google Scholar 

  38. Colafrancesco S, Priori R, Valesini G et al (2017) Response to Interleukin‑1 inhibitors in 140 Italian patients with adult-onset still’s disease: a multicentre retrospective observational study. Front Pharmacol 8:369

    PubMed  PubMed Central  Google Scholar 

  39. Feist E, Quartier P, Fautrel B et al (2018) Efficacy and safety of canakinumab in patients with Still’s disease: exposure-response analysis of pooled systemic juvenile idiopathic arthritis data by age groups. Clin Exp Rheumatol 36(4):668–675

    PubMed  Google Scholar 

  40. Nirmala N, Brachat A, Feist E et al (2015) Gene-expression analysis of adult-onset Still’s disease and systemic juvenile idiopathic arthritis is consistent with a continuum of a single disease entity. Pediatr Rheumatol Online J 13:50

    PubMed  PubMed Central  Google Scholar 

  41. Brunner HI, Ruperto N, Zuber Z et al (2015) Efficacy and safety of tocilizumab in patients with polyarticular-course juvenile idiopathic arthritis: results from a phase 3, randomised, double-blind withdrawal trial. Ann Rheum Dis 74(6):1110–1117

    CAS  PubMed  Google Scholar 

  42. Ma Y, Wu M, Zhang X et al (2018) Efficacy and safety of tocilizumab with inhibition of interleukin‑6 in adult-onset Still’s disease: A meta-analysis. Mod Rheumatol 28(5):849–857

    CAS  PubMed  Google Scholar 

  43. Kümmerle-Deschner JB (2016) Autoinflammatory syndromes : Practical approach to diagnostics and therapy. Z Rheumatol 75(6):542–555

    PubMed  Google Scholar 

  44. Benson MD, Buxbaum JN, Eisenberg DS et al (2018) Amyloid nomenclature 2018: recommendations by the International Society of Amyloidosis (ISA) nomenclature committee. Amyloid 25:215–219

    CAS  PubMed  Google Scholar 

  45. Simons JP, Al-Shawi R, Ellmerich S et al (2013) Pathogenetic mechanisms of amyloid A amyloidosis. Proc Natl Acad Sci USA 110:16115–16120

    CAS  PubMed  PubMed Central  Google Scholar 

  46. van der Hilst JC, Yamada T, Op den Camp HJ et al (2008) Increased susceptibility of serum amyloid A 1.1 to degradation by MMP-1: potential explanation for higher risk of type AA amyloidosis. Rheumatology 47(11):1651–1654

    PubMed  Google Scholar 

  47. Booth DR, Booth SE, Gillmore JD et al (1998) SAA1 alleles as risk factors in reactive systemic AA amyloidosis. Amyloid 5:262–265

    CAS  PubMed  Google Scholar 

  48. Nakamura T, Higashi S, Tomoda K et al (2006) Significance of SAA1.3 allele genotype in Japanese patients with amyloidosis secondary to rheumatoid arthritis. Baillieres Clin Rheumatol 45(1):43–49

    CAS  Google Scholar 

  49. Blank N, Hegenbart U, Lohse P et al (2015) Risk factors for AA amyloidosis in Germany. Amyloid 22:1–7

    CAS  PubMed  Google Scholar 

  50. Kieninger B, Eriksson M, Kandolf R et al (2010) Amyloid in endomyocardial biopsies. Virchows Arch 456(5):523–532

    CAS  PubMed  Google Scholar 

  51. von Hutten H, Mihatsch M, Lobeck H et al (2009) Prevalence and origin of amyloid in kidney biopsies. Am J Surg Pathol 33(8):1198–1205

    Google Scholar 

  52. Lachmann HJ, Goodman HJ, Gilbertson JA et al (2007) Natural history and outcome in systemic AA amyloidosis. N Engl J Med 356:2361–2371

    CAS  PubMed  Google Scholar 

  53. Bergesio F, Ciciani AM, Manganaro M et al (2008) Renal involvement in systemic amyloidosis: an Italian collaborative study on survival and renal outcome. Nephrol Dial Transplant 23(3):941–951

    CAS  PubMed  Google Scholar 

  54. van Gameren II, Hazenberg BP, Bijzet J et al (2006) Diagnostic accuracy of subcutaneous abdominal fat tissue aspiration for detecting systemic amyloidosis and its utility in clinical practice. Arthritis Rheum 54:2015–2021

    PubMed  Google Scholar 

  55. Schönland SO, Hegenbart U, Bochtler T et al (2012) Immunohistochemistry in the classification of systemic forms of amyloidosis: a systematic investigation of 117 patients. Blood 119(2):488–493

    PubMed  Google Scholar 

  56. Vrana JA, Theis JD, Dasari S et al (2014) Clinical diagnosis and typing of systemic amyloidosis in subcutaneous fat aspirates by mass spectrometry-based proteomics. Haematologica 99(7):1239–1247

    PubMed  PubMed Central  Google Scholar 

  57. Yilmaz M, Unsal A, Sokmen M et al (2012) Duodenal biopsy for diagnosis of renal involvement in amyloidosis. Clin Nephrol 77(2):114–118

    PubMed  Google Scholar 

  58. Kukuy O, Livneh A, Ben-David A et al (2013) Familial Mediterranean fever (FMF) with proteinuria: clinical features, histology, predictors, and prognosis in a cohort of 25 patients. J Rheumatol 40(12):2083–2087

    CAS  PubMed  Google Scholar 

  59. Hopfer H, Wiech T, Mihatsch MJ (2011) Renal amyloidosis revisited: amyloid distribution, dynamics and biochemical type. Nephrol Dial Transplant 26(9):2877–2884

    PubMed  Google Scholar 

  60. Blank N, Hegenbart U, Schönland S (2016) Causes and treatment of systemic amyloidosis. Z Rheumatol 75(2):141–150

    CAS  PubMed  Google Scholar 

  61. Gaggiano C, Rigante D, Sota J et al (2019) Treatment options for periodic fever, aphthous stomatitis, pharyngitis, and cervical adenitis (PFAPA) syndrome in children and adults: a narrative review. Clin Rheumatol 38(1):11–17

    PubMed  Google Scholar 

  62. Sahin S, Adrovic A, Kasapcopur O (2019) A monogenic autoinflammatory disease with fatal vasculitis: deficiency of adenosine deaminase 2. Curr Opin Rheumatol. https://doi.org/10.1097/BOR.0000000000000669

    Article  Google Scholar 

  63. Jarosz-Griffiths HH, Holbrook J, Lara-Reyna S et al (2019) TNF receptor signalling in autoinflammatory diseases. Int Immunol 31(10):639–648

    CAS  PubMed  Google Scholar 

  64. Fiehn C (2017) Familial chilblain lupus : type 1 interferonopathy with model character. Z Rheumatol 76(4):322–327

    CAS  PubMed  Google Scholar 

  65. Feist E, Brehm A, Kallinich T et al (2017) Clinical aspects and genetics of proteasome-associated autoinflammatory syndromes (PRAAS). Z Rheumatol 76(4):328–334

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Blank.

Ethics declarations

Interessenkonflikt

N. Blank erhielt Forschungsunterstützung von den Firmen SOBI und Novartis sowie Vortragshonorare und Unterstützung für Kongressteilnahmen von SOBI, Novartis, Roche, MSD, Abbott, Pfizer, Boehringer-Ingelheim, Actelion und UCB. S.O. Schönland erhielt Forschungsunterstützung von Sanofi und Janssen sowie Unterstützung für Kongressteilnahmen von Medac, Sanofi und Takeda.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Redaktion

N. Blank, Heidelberg

H.-I. Huppertz, Bremen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blank, N., Schönland, S.O. Autoinflammatorische Syndrome und Amyloid-A-Amyloidose. Z Rheumatol 79, 649–659 (2020). https://doi.org/10.1007/s00393-020-00778-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00393-020-00778-3

Schlüsselwörter

Keywords

Navigation