Skip to main content

Advertisement

Log in

Frakturen und Knochendichte im Kindesalter

Fractures and bone mineral density in childhood

  • Leitthema
  • Published:
Zeitschrift für Rheumatologie Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Bei entzündlichen Gelenkerkrankungen wird durch die proinflammatorischen Zytokine die Knochenformation beeinträchtigt und der Knochenabbau stimuliert. Entzündungshemmende Medikamente wie Glukokortikoide und NSAR (nichtsteroidale Antirheumatika) haben zudem das Potenzial, das Wachstum und den Erhalt des Knochens zu hemmen. Im Kindesalter und in der Adoleszenz sind diese Phänomene für das wachsende Skelett von besonderer Bedeutung.

Ziel der Arbeit

In dieser Übersicht sollen die Kenntnisse über das Ausmaß des Problems zusammengefasst, diagnostische Verfahren kritisch beleuchtet und mögliche therapeutische Maßnahmen diskutiert werden.

Methoden

Eine systematische Literaturrecherche zum Thema wurde durchgeführt und die Evidenz auf dem Boden der Expertenmeinung der Autoren festgestellt.

Ergebnisse und Diskussion

In den letzten Jahren wurden gute Daten zur Interpretation der Knochendichte bei Kindern und Adoleszenten erarbeitet, die es erlauben, unter Einbeziehung der aktuellen Entwicklungsphase und Körperlänge und in Abwägung der sehr niedrigen Strahlenbelastung die Messung der Knochenflächendichte mittels DXA (Dual-energy-X-ray-Absorption) zur Diagnostik und Risikoevaluation klinisch einzusetzen. Dabei sind dynamische Entwicklungen der Knochenflächendichte über die Zeit in Zusammenschau mit anderen klinischen Parametern besonders aussagekräftig. Insbesondere bei juveniler idiopathischer Arthritis und anderen Erkrankungen des rheumatischen Formenkreises ist die Messung zur Überwachung der Knochengesundheit hilfreich. Sie kann zur Indikation erweiterter Diagnostik und zur Indikation spezifischer pharmakologischer Therapie mit knochenwirksamen Medikamenten beitragen, ebenso aber auch zur Gestaltung präventiver Maßnahmen wie ausreichender Zufuhr von Kalzium und Vitamin D und gezielter Trainingsinterventionen. Kinder mit chronisch entzündlichen Erkrankungen tragen auch in Zeiten hochwirksamer Antirheumatika ein Risiko für ihre Knochengesundheit.

Abstract

Background

In juvenile idiopathic arthritis and related chronic inflammatory diseases, proinflammatory cytokines inhibit bone formation and stimulate bone resorption. Anti-inflammatory drugs, such as glucocorticoids and nonsteroidal antirheumatic drugs (NSARD) have as a side effect the potential to inhibit growth and maintenance of bone. These issues are of particular importance for the growing skeleton in childhood and adolescence.

Objective

This article presents a narrative overview about the dimension of the problem, a critical evaluation of diagnostic procedures and a discussion of available countermeasures.

Methods

A systematic literature search was carried out and the available evidence was evaluated based on the authors’ knowledge and clinical experience as experts in the field.

Results and conclusion

In recent years solid data have been accumulated with respect to the interpretation of bone mineral density (BMD) measurements in children and adolescents. Based on these data from the literature and given that the radiation exposure is also very low, it is now possible to clinically apply BMD measurements in this population using dual energy X‑ray absorption (DXA) technology for risk evaluation and diagnosis, taking the respective phase of development and body length into consideration. Dynamic measurements over time appear to be especially valuable in the context of individual clinical data. Hence, BMD measurements can be helpful in monitoring bone health, especially in juvenile idiopathic arthritis and other related inflammatory diseases. Apart from the specific indications for extended diagnostics and bone targeted pharmacological treatment, this method can also contribute to the management of preventive measures, such as sufficient calcium and vitamin D intake and targeted exercise interventions. Even in times of extremely effective antirheumatic drugs, children with chronic inflammatory diseases still bear a risk for bone health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. Crabtree NJ, Shaw NJ, Bishop NJ, Adams JE, Mughal MZ, Arundel P et al (2017) Amalgamated reference data for size-adjusted bone densitometry measurements in 3598 children and young adults-the ALPHABET study. J Bone Miner Res 32(1):172–180

    Article  Google Scholar 

  2. Duran I, Martakis K, Rehberg M, Semler O, Schoenau E (2018) Individualized evaluation of lumbar bone mineral density and bone mineral apparent density in children and adolescents. Arch Osteoporos 13(1):117

    Article  Google Scholar 

  3. McCormack SE, Cousminer DL, Chesi A, Mitchell JA, Roy SM, Kalkwarf HJ et al (2017) Association between linear growth and bone accrual in a diverse cohort of children and adolescents. Jama Pediatr 171(9):e171769

    Article  Google Scholar 

  4. Boeyer ME, Sherwood RJ, Deroche CB, Duren DL (2018) Early maturity as the new normal: a century-long study of bone age. Clin Orthop Relat Res 476(11):2112–2122

    Article  Google Scholar 

  5. Kelly A, Shults J, Mostoufi-Moab S, McCormack SE, Stallings VA, Schall JI et al (2019) Pediatric Bone Mineral Accrual Z‑Score calculation equations and their application in childhood disease. J Bone Miner Res 34(1):195–203

    Article  Google Scholar 

  6. Mostoufi-Moab S, Kelly A, Mitchell JA, Baker J, Zemel BS, Brodsky J et al (2018) Changes in pediatric DXA measures of musculoskeletal outcomes and correlation with quantitative CT following treatment of acute lymphoblastic leukemia. Bone 112:128–135

    Article  Google Scholar 

  7. Cousminer DL, Mitchell JA, Chesi A, Roy SM, Kalkwarf HJ, Lappe JM et al (2018) Genetically determined later puberty impacts lowered bone mineral density in childhood and adulthood. J Bone Miner Res 33(3):430–436

    Article  Google Scholar 

  8. Rachmiel M, Naugolni L, Mazor-Aronovitch K, Koren-Morag N, Bistritzer T (2017) Bone age assessments by quantitative ultrasound (SonicBone) and hand X‑ray based methods are comparable. Isr Med Assoc J 19(9):533–538

    PubMed  Google Scholar 

  9. Specker BL, Schoenau E (2005) Quantitative bone analysis in children: current methods and recommendations. J Pediatr 146(6):726–731

    Article  Google Scholar 

  10. Lageweg CMT, van der Putten ME, van Goudoever JB, Feuth T, Gotthardt M, van Heijst AFJ et al (2018) Evaluation of bone mineralization in former preterm born children: Phalangeal quantitative ultrasound cannot replace dual-energy X‑ray absorptiometry. Bone Rep 8:38:45

    Google Scholar 

  11. Torres-Costoso A, Vlachopoulos D, Ubago-Guisado E, Ferri-Morales A, Cavero-Redondo I, Martinez-Vizcaino V et al (2018) Agreement between dual-energy X‑ay absorptiometry and quantitative ultrasound to evaluate bone health in adolescents: The PRO-BONE study. Pediatr Exerc Sci 30(4):466–473

    Article  Google Scholar 

  12. Adamczyk P, Szczepanska M, Pluskiewicz W (2018) Skeletal status assessment by quantitative ultrasound and bone densitometry in children with different renal conditions. Osteoporos Int 29(12):2667–2675

    Article  CAS  Google Scholar 

  13. Alqahtani FF, Offiah AC (2019) Diagnosis of osteoporotic vertebral fractures in children. Pediatr Radiol 49(3):283–296

    Article  Google Scholar 

  14. Denova-Gutierrez E, Mendez-Sanchez L, Munoz-Aguirre P, Tucker KL, Clark P (2018) Dietary patterns, bone mineral density, and risk of fractures: a systematic review and meta-analysis. Nutrients 10(12):1922

    Article  CAS  Google Scholar 

  15. Hohman EE, Balantekin KN, Birch LL, Savage JS (2018) Dieting is associated with reduced bone mineral accrual in a longitudinal cohort of girls. BMC Public Health 18(1):1285

    Article  Google Scholar 

  16. Nagata JM, Carlson JL, Golden NH, Long J, Murray SB, Peebles R (2019) Comparisons of bone density and body composition among adolescents with anorexia nervosa and atypical anorexia nervosa. Int J Eat Disord. https://doi.org/10.1002/eat.23048

    Article  PubMed  PubMed Central  Google Scholar 

  17. Mumford J, Kohn M, Briody J, Miskovic-Wheatley J, Madden S, Clarke S et al (2019) Long-term outcomes of adolescent anorexia nervosa on bone. J Adolesc Health 64(3):305–310

    Article  Google Scholar 

  18. Coelho JS, Lee T, Karnabi P, Burns A, Marshall S, Geller J et al (2018) Eating disorders in biological males: clinical presentation and consideration of sex differences in a pediatric sample. J Eat Disord 6:40

    Article  Google Scholar 

  19. Kandemir N, Becker K, Slattery M, Tulsiani S, Singhal V, Thomas JJ et al (2017) Impact of low-weight severity and menstrual status on bone in adolescent girls with anorexia nervosa. Int J Eat Disord 50(4):359–369

    Article  Google Scholar 

  20. van Leeuwen J, Koes BW, Paulis WD, van Middelkoop M (2017) Differences in bone mineral density between normal-weight children and children with overweight and obesity: a systematic review and meta-analysis. Obes Rev 18(5):526–546

    Article  Google Scholar 

  21. Hetherington-Rauth M, Bea JW, Blew RM, Funk JL, Lee VR, Roe DJ et al (2019) Relationship of cardiometabolic risk biomarkers with DXA and pQCT bone health outcomes in young girls. Bone 120:452–458

    Article  CAS  Google Scholar 

  22. Kindler JM, Lobene AJ, Vogel KA, Martin BR, McCabe LD, Peacock M et al (2019) Adiposity, insulin resistance, and bone mass in children and adolescents. J Clin Endocrinol Metab 104(3):892–899

    Article  Google Scholar 

  23. Hetherington-Rauth M, Bea JW, Blew RM, Funk JL, Hingle MD, Lee VR et al (2018) Relative contributions of lean and fat mass to bone strength in young Hispanic and non-Hispanic girls. Bone 113:144–150

    Article  Google Scholar 

  24. Krishnan S, Anderson MP, Fields DA, Misra M (2018) Abdominal obesity adversely affects bone mass in children. World J Clin Pediatr 7(1):43–48

    Article  Google Scholar 

  25. Kelley JC, Stettler-Davis N, Leonard MB, Hill D, Wrotniak BH, Shults J et al (2018) Effects of a randomized weight loss intervention trial in obese adolescents on tibia and radius bone geometry and volumetric density. J Bone Miner Res 33(1):42–53

    Article  CAS  Google Scholar 

  26. Catrina AI, Svensson CI, Malmstrom V, Schett G, Klareskog L (2017) Mechanisms leading from systemic autoimmunity to joint-specific disease in rheumatoid arthritis. Nat Rev Rheumatol 13(2):79–86

    Article  CAS  Google Scholar 

  27. Buckley L, Humphrey MB (2018) Glucocorticoid-induced osteoporosis. N Engl J Med 379(26):2547–2556

    Article  Google Scholar 

  28. Burnham JM, Leonard MB (2004) Bone disease in pediatric rheumatologic disorders. Curr Rheumatol Rep 6(1):70–78

    Article  Google Scholar 

  29. Huber AM, Ward LM (2016) The impact of underlying disease on fracture risk and bone mineral density in children with rheumatic disorders: A review of current literature. Semin Arthritis Rheum 46(1):49–63

    Article  Google Scholar 

  30. Risum K, Edvardsen E, Godang K, Selvaag AM, Hansen BH, Molberg O et al (2018) Physical fitness in patients with oligo- and polyarticular juvenile idiopathic arthritis diagnosed in the era of biologics—A controlled cross-sectional study. Arthritis Care Res. https://doi.org/10.1002/acr.23818

    Article  Google Scholar 

  31. Harrington J, Holmyard D, Silverman E, Sochett E, Grynpas M (2016) Bone histomorphometric changes in children with rheumatic disorders on chronic glucocorticoids. Pediatr Rheumatol Online J 14(1):58

    Article  Google Scholar 

  32. Stagi S, Cavalli L, Signorini C, Bertini F, Cerinic MM, Brandi ML et al (2014) Bone mass and quality in patients with juvenile idiopathic arthritis: longitudinal evaluation of bone-mass determinants by using dual-energy x‑ray absorptiometry, peripheral quantitative computed tomography, and quantitative ultrasonography. Arthritis Res Ther 16(2):R83

    Article  Google Scholar 

  33. Kathuria P, Gordon KB, Silverberg JI (2017) Association of psoriasis and psoriatic arthritis with osteoporosis and pathological fractures. J Am Acad Dermatol 76(6):1045–53e3

    Article  Google Scholar 

  34. LeBlanc CM, Ma J, Taljaard M, Roth J, Scuccimarri R, Miettunen P et al (2015) Incident vertebral fractures and risk factors in the first three years following glucocorticoid initiation among pediatric patients with rheumatic disorders. J Bone Miner Res 30(9):1667–1675

    Article  CAS  Google Scholar 

  35. Marini JC, Forlino A, Bachinger HP, Bishop NJ, Byers PH, Paepe A et al (2017) Osteogenesis imperfecta. Nat Rev Dis Primers 3:17052

    Article  Google Scholar 

  36. Hofmann CE, Harmatz P, Vockley J, Hogler W, Nakayama H, Bishop N et al (2019) Efficacy and safety of asfotase alfa in infants and young children with hypophosphatasia: a phase 2 open-label study. J Clin Endocrinol Metab. https://doi.org/10.1210/jc.2018-02335

    Article  PubMed  PubMed Central  Google Scholar 

  37. Whyte MP (2016) Hypophosphatasia—aetiology, nosology, pathogenesis, diagnosis and treatment. Nat Rev Endocrinol 12(4):233–246

    Article  CAS  Google Scholar 

  38. Bachrach LK, Gordon CM, Section On E (2016) Bone densitometry in children and adolescents. Pediatrics 138:4

    Article  Google Scholar 

  39. Nguyen VH (2018) School-based exercise interventions effectively increase bone mineralization in children and adolescents. Osteoporos Sarcopenia 4(2):39–46

    Article  Google Scholar 

  40. Houghton KM, Macdonald HM, McKay HA, Guzman J, Duffy C, Tucker L et al (2018) Feasibility and safety of a 6-month exercise program to increase bone and muscle strength in children with juvenile idiopathic arthritis. Pediatr Rheumatol Online J 16(1):67

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franz Jakob.

Ethics declarations

Interessenkonflikt

C. Hofmann, H. Girschick, C. Lapa, O. Semler und F. Jakob geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Redaktion

H.-I. Huppertz, Bremen

K. Minden, Berlin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hofmann, C., Girschick, H., Lapa, C. et al. Frakturen und Knochendichte im Kindesalter. Z Rheumatol 78, 636–644 (2019). https://doi.org/10.1007/s00393-019-0671-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00393-019-0671-2

Schlüsselwörter

Keywords

Navigation