Advertisement

Zeitschrift für Rheumatologie

, Volume 76, Issue 8, pp 723–729 | Cite as

Diagnostic accuracy of dual-energy CT and ultrasound in gouty arthritis

A systematic review
  • J. Chen
  • M. LiaoEmail author
  • H. Zhang
  • D. Zhu
Übersichten

Abstract

Objective

The aim of our study was to compare the overall accuracy of ultrasonography (US), with at least one sign positive (double contour, tophus, aggregates), and dual-energy CT in the diagnosis of gouty arthritis.

Methods

PubMed, Web of Science, EI, Elsevier, Wiley Online Library and Cochrane library were systematically searched for studies on the diagnostic performance of dual-energy CT (DECT) and ultrasound (US) from 2005 to February 2016. After study selection, data and quality assessment, the sensitivity (SEN), specificity (SPE), diagnostic odds rate (DOR), positive likelihood ratio (PLR), negative likelihood ratio (NLR) and summary receiver operating contraction racteristic (SROC) curves were calculated.

Results

Eleven publications met our inclusion criteria. Of these, six studies were included in the dual-energy CT group, six studies in the US group, and one study compared dual-energy CT and US. The pooled SEN, SPE, DOR, PLR, NLR and SROC of US with at least one sign positive, were 93%, 73%, 37.94, 3.39, 0.11 and 92%, respectively; and of DECT the values were 88%, 85%, 38.70, 5.12, 0.16, 93% and respectively.

Conclusion

Based on current evidence, both US and DECT can be used for diagnosis of gouty arthritis, but there are some differences between them regarding diagnostic sensitivity and specificity.

Keywords

Gouty arthritis Dual-energy CT Ultrasound At least one sign positive Monosodium urate crystal deposition 

Diagnostische Genauigkeit der Dual-Energy-CT und des Ultraschalls bei Gichtarthritis

Systematische Übersicht

Zusammenfassung

Ziel

Ziel der vorliegenden Studie war der Vergleich der Gesamtgenauigkeit der Ultraschalluntersuchung (US) bei Vorliegen mindestens eines positiven Kriteriums (Doppelkontur, Tophus, Aggregate) und der Dual-Energy-Computertomographie (DECT) für die Diagnosestellung der Gichtarthritis.

Methoden

Systematisch wurden die Datenbanken PubMed, Web of Science, EI, Elsevier, Wiley Online Library und Cochrane Library von 2005 bis Februar 2016 nach Studien zur diagnostischen Leistungsfähigkeit der DECT und des US durchsucht. Nach Auswahl entsprechender Studien, Daten- und Qualitätserfassung wurden die Sensitivität (SEN), Spezifität (SPE), diagnostische Odds Rate (DOR) und die Summary-Receiver-Operating-Characteristic(SROC)-Kurve berechnet.

Ergebnisse

Elf Publikationen stimmten mit den Einschlusskriterien der Autoren überein. Davon gehörten 6 Studien in die DECT-Gruppe, 6 Studien in die US-Gruppe, und eine Studie verglich DECT mit US. Die gepoolte (95%-Konfidenzintervall, 95%-KI) Sensitivität, Spezifität, diagnostische Odds Rate, PLR, NLR und SROC für US mit mindestens einem positiven Kriterium lagen bei 0,93; 0,73; 37,94; 3,39; 0,11 bzw. 0,92; und für DECT betrugen die Werte 0,88; 0,85; 38,70; 5,12; 0,16 bzw. 0,93.

Schlussfolgerung

Nach derzeitiger Evidenzlage können sowohl US als auch DECT zur Diagnosestellung einer Gichtarthritis eingesetzt werden, es gibt jedoch Unterschiede zwischen ihnen in Bezug auf die diagnostische Sensitivität und Spezifität.

Schlüsselwörter

Gichtarthritis Dual-Energy-Computertomographie Ultraschall Mindestens ein positives Kriterium Mononatriumuratkristallablagerung 

Notes

Acknowledgements

We would like to thank Wuhan University for providing the platform for literature search and Zhongnan Hospital for administrative support.

Compliance with ethical guidelines

Conflict of interest

J. Chen, M. Liao, H. Zhang and D. Zhu declare that they have no competing interests.

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1964 and later versions. This article does not contain any studies with human or animal subjects performed by the any of the authors.

References

  1. 1.
    Tausche AK, Jansen TL, Schröder HE et al (2009) Gout – current diagnosis and treatment. Dtsch Arztebl Int 106:54955Google Scholar
  2. 2.
    Singh JA, Strand V (2008) Gout is associated with more comorbidities, poorer health-related quality of life and higher health care utilization in US veterans. Ann Rheum Dis 67:13106Google Scholar
  3. 3.
    Robinson PC, Horsburgh S (2014) Gout: joints and beyond, epidemiology, clinical features, treatment and co-morbidities. Maturitas 78:245–251CrossRefPubMedGoogle Scholar
  4. 4.
    Zhu Y, Pandya BJ, Choi HK (2011) Prevalence of gout and hyperuricemia in the US general population: the National Health and Nutrition Examination Survey 2007–2008. Arthritis Rheum 63:3136–3141CrossRefPubMedGoogle Scholar
  5. 5.
    Annemans L, Speapen E, Gaskin M et al (2008) Gout in the UK and Germany: prevalence, comrtidities and management in general practice 2000–2005. Ann Rheum Dis 67:960–966CrossRefPubMedGoogle Scholar
  6. 6.
    Miao Z, Li C, Chen Y et al (2008) Dietary and lifestyle changes associated with high prevalence of hyperuricemia and gout in the Shandong coastal cities of Eastem China. J Rheumatol 35:1859–1864PubMedGoogle Scholar
  7. 7.
    Nan H, Qiao Q, Dong Y et al (2006) The prevalence of hyperuricemia in a population of the coastal city of China. J Rheumatol 33:1346–1350PubMedGoogle Scholar
  8. 8.
    Malik A, Schumacher HR, Dinnella JE et al (2009) Clinical diagnostic criteria for gout: Comparison with the gold standard of synovial fluid crystal analysis. J Clin Rheumatol 15:22–24CrossRefPubMedGoogle Scholar
  9. 9.
    Parathithasan N, Lee W‑K, Pianta M et al (2016) Gouty arthropathy: Review of clinico-pathologic and imaging features. J Med Imaging Radiat Oncol 60:9–20CrossRefPubMedGoogle Scholar
  10. 10.
    Fodor D, Nestorova R, Vlad V et al (2014) The place of musculoskeletal ultrasonography in gout diagnosis. Med Ultrason 16:336–344PubMedGoogle Scholar
  11. 11.
    Scirocco C, Rutigliano IM, Finucci A et al (2015) Musculoskeletal ultrasonography in gout. Med Ultrason 17:535–540PubMedGoogle Scholar
  12. 12.
    Zeng X, Zhang Y, Kwong JS et al (2015) The methodological quality assessment tools for preclinical and clinical studies, systematic review and meta-analysis, and clinical practice guideline: a systematic review. J Evid Based Med 8:2–10CrossRefPubMedGoogle Scholar
  13. 13.
    Deeks JJ, Macaskill P, Irwig L (2005) The performance of tests of publication bias and other sample size effects in systematic reviews of diagnostic test accuracy was assessed. J Clin Epidemiol 58:882–893CrossRefPubMedGoogle Scholar
  14. 14.
    Bongartz T, Glazebrook KN, Kavros SJ et al (2014) Dual-energy CT for the diagnosis of gout: an accuracy and diagnostic yield study. Ann Rheum Dis 74(6):1072–1077CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Huppertz A, Hermann K‑GA et al (2014) Systemic staging for urate crystal deposits with dual energy CT and ultrasound in patients with suspected gout. Rheumatol Int 34:763–771CrossRefPubMedGoogle Scholar
  16. 16.
    Dalbeth N, House ME, Aati O et al (2015) Urate crystal deposition in asymptomatic hyperuricaemia and symptomatic gout: a dual energy CT study. Ann Rheum Dis 74(5):908–911CrossRefPubMedGoogle Scholar
  17. 17.
    Choi HK, Burns LC, Shojania K et al (2012) Dual energy CT in gout: a prospective validation study. Ann Rheum Dis 71:1466–1471CrossRefPubMedGoogle Scholar
  18. 18.
    Glazebrook KN, Guimaraes LS, Murthy NS et al (2011) Identication of intraarticular and periartieular uric acid crystals with dual-energy CT: initial evaluation. Radiology 261:516–524CrossRefPubMedGoogle Scholar
  19. 19.
    Choi HK, Al-Arfaj AM, Ehekhari A et al (2009) Dual energy computed tomography in tophaceous gout. Ann Rheum Dis 68:1609–1612CrossRefPubMedGoogle Scholar
  20. 20.
    Lamers-Karnebeek FBG, Van Riel PLCM, Jansen TL (2014) Additive value for ultrasonographic signal in a screening algorithm for patients presenting with acute mono-/oligoarthritis in whom gout is suspected. Clin Rheumatol 33:555–559CrossRefPubMedGoogle Scholar
  21. 21.
    Lai K‑L, Chiu Y‑M (2011) Role of ultrasonography in diagnosing gouty arthritis. J Med Ultrasound 19:7–13CrossRefGoogle Scholar
  22. 22.
    De Eugenio M, Puig JG, Castillo C et al (2012) Diagnosis of gout in patients with asymptomatic hyperuricaemia: a pilot ultrasound study. Ann Rheum Dis 71:157–158CrossRefGoogle Scholar
  23. 23.
    Elsaman AM, Muhammad EM, Pessler F (2016) Sonographic findings in gouty arthritis: diagnostic value and association with disease duration. Ultrasound Med Biol 42:1330–1336CrossRefPubMedGoogle Scholar
  24. 24.
    Rettenbacher T, Ennemoser S, Weirich H et al (2008) Diagnostic imaging of gout: comparison of high-resolution US versus conventional X‑ray. Eur Radiol 18:621–630CrossRefPubMedGoogle Scholar
  25. 25.
    Dalbeth N, Fransen J, Jansen TL et al (2013) New classification criteria for gout: a framework for progress. Rheumatology 52:1748–1753CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Thiele RG, Schlesinger N (2007) Diagnosis of gout by ultrasound. Rheumatology 46:1116–1121CrossRefPubMedGoogle Scholar
  27. 27.
    Ogdie A, Taylor WJ, Weatherall M et al (2014) Imaging modalities for the classification of gout: systematic literature review and meta-analysis. Ann Rheum Dis 74(10):1868–1874CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of RadiologyZhongnan Hospital of Wuhan UniversityWuhan CityChina

Personalised recommendations