Skip to main content

Advertisement

Log in

Knochen- und Fettgewebebildung

Bone and adipose tissue formation

  • Neues aus der Forschung
  • Published:
Zeitschrift für Rheumatologie Aims and scope Submit manuscript

Zusammenfassung

Leptin wird eine zentrale Rolle in der Knochenhomöostase zugeschrieben, sowohl durch systemische als auch durch lokale Wirkungen. Systemisch scheint Leptin die Knochenbildung zu inhibieren, kontrolliert durch eine Rückkopplungsschleife unter Beteiligung von Osteocalcin und Insulin. Auch wenn die Wirkung spezifisch für bestimmte Knochen sowie geschlechts- und zeitabhängig zu sein scheint, sind die Studienergebnisse, welche die Interaktion dieser drei Faktoren zeigen, teilweise noch widersprüchlich. Im vorliegenden Beitrag fassen wir die komplexen Effekte von Leptin, Insulin und Osteocalcin auf den Knochen- und Fettstoffwechsel zusammen.

Abstract

Leptin has been described to have a crucial role in bone homeostasis by systemic as well as local action. Systemically, leptin seems to inhibit bone formation controlled by a feedback loop including osteocalcin and insulin. Even though the action seems to be bone site specific, as well as gender- and time-dependent, the results showing the interaction of these three factors are in part still inconsistent. In this article the complex effects of leptin, insulin, and osteocalcin on bone and fat metabolism are summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Schett G, David JP (2010) The multiple faces of autoimmune-mediated bone loss. Nat Rev Endocrinol 6:698–706

    Article  CAS  PubMed  Google Scholar 

  2. Scheller EL, Rosen CJ (2014) What’s the matter with MAT? Marrow adipose tissue, metabolism, and skeletal health. Ann N Y Acad Sci 1311:14–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Doucette CR, Horowitz MC, Berry R, MacDougald OA, Anunciado-Koza R, Koza RA, Rosen CJ (2015) A high fat diet increases bone Marrow Adipose Tissue (MAT) but does not alter trabecular or cortical bone mass in C57BL/6 J Mice. J Cell Physiol 230:2032–2037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Devlin MJ (2011) Why does starvation make bones fat? Am J Hum Biol 23:577–585

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ma X, Lee P, Chisholm DJ, James DE (2015) Control of adipocyte differentiation in different fat depots; implications for pathophysiology or therapy. Front Endocrinol (Lausanne) 6:1

    Google Scholar 

  6. Ducy P, Amling M, Takeda S, Priemel M, Schilling AF, Beil FT, Shen J, Vinson C, Rueger JM, Karsenty G (2000) Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell 100:197–207

    Article  CAS  PubMed  Google Scholar 

  7. Hamrick MW, Pennington C, Newton D, Xie D, Isales C (2004) Leptin deficiency produces contrasting phenotypes in bones of the limb and spine. Bone 34:376–383

    Article  CAS  PubMed  Google Scholar 

  8. Williams GA, Callon KE, Watson M, Costa JL, Ding Y, Dickinson M, Wang Y, Naot D, Reid IR, Cornish J (2011) Skeletal phenotype of the leptin receptor-deficient db/db mouse. J Bone Miner Res 26:1698–1709

    Article  CAS  PubMed  Google Scholar 

  9. Bao D, Ma Y, Zhang X, Guan F, Chen W, Gao K, Qin C, Zhang L (2015) Preliminary characterization of a Leptin receptor knockout rat created by CRISPR/Cas9 system. Sci Rep 5:15942

    Article  PubMed  PubMed Central  Google Scholar 

  10. Zhou BO, Yue R, Murphy MM, Peyer JG, Morrison SJ (2014) Leptin-receptor-expressing mesenchymal stromal cells represent the main source of bone formed by adult bone marrow. Cell Stem Cell 15:154–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Scheller EL, Song J, Dishowitz MI, Soki FN, Hankenson KD, Krebsbach PH (2010) Leptin functions peripherally to regulate differentiation of mesenchymal progenitor cells. Stem Cells 28:1071–1080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Odabasi E, Ozata M, Turan M, Bingol N, Yonem A, Cakir B, Kutlu M, Ozdemir IC (2000) Plasma leptin concentrations in postmenopausal women with osteoporosis. Eur J Endocrinol 142:170–173

    Article  CAS  PubMed  Google Scholar 

  13. Blain H, Vuillemin A, Guillemin F, Durant R, Hanesse B, de Talance N, Doucet B, Jeandel C (2002) Serum leptin level is a predictor of bone mineral density in postmenopausal women. J Clin Endocrinol Metab 87:1030–1035

    Article  CAS  PubMed  Google Scholar 

  14. Pasco JA, Henry MJ, Kotowicz MA, Collier GR, Ball MJ, Ugoni AM, Nicholson GC (2001) Serum leptin levels are associated with bone mass in nonobese women. J Clin Endocrinol Metab 86:1884–1887

    CAS  PubMed  Google Scholar 

  15. Schett G, Kiechl S, Bonora E, Redlich K, Woloszczuk W, Oberhollenzer F, Jocher J, Dorizzi R, Muggeo M, Smolen J, Willeit J (2004) Serum leptin level and the risk of nontraumatic fracture. Am J Med 117:952–956

    Article  CAS  PubMed  Google Scholar 

  16. Sato M, Takeda N, Sarui H, Takami R, Takami K, Hayashi M, Sasaki A, Kawachi S, Yoshino K, Yasuda K (2001) Association between serum leptin concentrations and bone mineral density, and biochemical markers of bone turnover in adult men. J Clin Endocrinol Metab 86:5273–5276

    Article  CAS  PubMed  Google Scholar 

  17. Kontogianni MD, Dafni UG, Routsias JG, Skopouli FN (2004) Blood leptin and adiponectin as possible mediators of the relation between fat mass and BMD in perimenopausal women. J Bone Miner Res 19:546–551

    Article  CAS  PubMed  Google Scholar 

  18. Blum M, Harris SS, Must A, Naumova EN, Phillips SM, Rand WM, Dawson-Hughes B (2003) Leptin, body composition and bone mineral density in premenopausal women. Calcif Tissue Int 73:27–32

    Article  CAS  PubMed  Google Scholar 

  19. Ozata M (2002) Different presentation of bone mass in mice and humans with congenital leptin deficiency. J Clin Endocrinol Metab 87:951

    Article  CAS  PubMed  Google Scholar 

  20. Whitfield JF, Leptin (2001) Brains and bones. Expert Opin Investig Drugs 10:1617–1622

    Article  CAS  PubMed  Google Scholar 

  21. Himms-Hagen J (1999) Physiological roles of the leptin endocrine system: differences between mice and humans. Crit Rev Clin Lab Sci 36:575–655

    Article  CAS  PubMed  Google Scholar 

  22. Cao JJ, Sun L, Gao H (2010) Diet-induced obesity alters bone remodeling leading to decreased femoral trabecular bone mass in mice. Ann N Y Acad Sci 1192:292–297

    Article  CAS  PubMed  Google Scholar 

  23. Fujita Y, Maki K (2015) High-fat diet-induced obesity triggers alveolar bone loss and spontaneous periodontal disease in growing mice. BMC Obes 3:1

    Article  PubMed  Google Scholar 

  24. Fulzele K, Riddle RC, DiGirolamo DJ, Cao X, Wan C, Chen D, Faugere MC, Aja S, Hussain MA, Bruning JC, Clemens TL (2010) Insulin receptor signaling in osteoblasts regulates postnatal bone acquisition and body composition. Cell 142:309–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ferron M, Wei J, Yoshizawa T, Del Fattore A, DePinho RA, Teti A, Ducy P, Karsenty G (2010) Insulin signaling in osteoblasts integrates bone remodeling and energy metabolism. Cell 142:296–308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wei J, Ferron M, Clarke CJ, Hannun YA, Jiang H, Blaner WS, Karsenty G (2014) Bone-specific insulin resistance disrupts whole-body glucose homeostasis via decreased osteocalcin activation. J Clin Invest 124:1–13

    Article  PubMed  Google Scholar 

  27. Gustafson B, Hedjazifar S, Gogg S, Hammarstedt A, Smith U (2015) Insulin resistance and impaired adipogenesis. Trends Endocrinol Metab 26:193–200

    Article  CAS  PubMed  Google Scholar 

  28. Lee NK, Sowa H, Hinoi E, Ferron M, Ahn JD, Confavreux C, Dacquin R, Mee PJ, McKee MD, Jung DY, Zhang Z, Kim JK, Mauvais-Jarvis F, Ducy P, Karsenty G (2007) Endocrine regulation of energy metabolism by the skeleton. Cell 130:456–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ferron M, McKee MD, Levine RL, Ducy P, Karsenty G (2012) Intermittent injections of osteocalcin improve glucose metabolism and prevent type 2 diabetes in mice. Bone 50:568–575

    Article  CAS  PubMed  Google Scholar 

  30. Yasutake Y, Mizokami A, Kawakubo-Yasukochi T, Chishaki S, Takahashi I, Takeuchi H, Hirata M (2016) Long-term oral administration of osteocalcin induces insulin resistance in male mice fed a high-fat, high-sucrose diet. Am J Physiol Endocrinol Metab 310(8):E662–E675. doi:10.1152/ajpendo.00334.2015

    Google Scholar 

  31. Luther J, Driessler F, Megges M, Hess A, Herbort B, Mandic V, Zaiss MM, Reichardt A, Zech C, Tuckermann JP, Calkhoven CF, Wagner EF, Schett G, David JP (2011) Elevated Fra-1 expression causes severe lipodystrophy. J Cell Sci 124:1465–1476

    Article  CAS  PubMed  Google Scholar 

  32. Sabatakos G, Sims NA, Chen J, Aoki K, Kelz MB, Amling M, Bouali Y, Mukhopadhyay K, Ford K, Nestler EJ, Baron R (2000) Overexpression of DeltaFosB transcription factor(s) increases bone formation and inhibits adipogenesis. Nat Med 6:985–990

    Article  CAS  PubMed  Google Scholar 

  33. Bennett CN, Ouyang H, Ma YL, Zeng Q, Gerin I, Sousa KM, Lane TF, Krishnan V, Hankenson KD, MacDougald OA (2007) Wnt10b increases postnatal bone formation by enhancing osteoblast differentiation. J Bone Miner Res 22:1924–1932

    Article  CAS  PubMed  Google Scholar 

  34. Moitra J, Mason MM, Olive M, Krylov D, Gavrilova O, Marcus-Samuels B, Feigenbaum L, Lee E, Aoyama T, Eckhaus M, Reitman ML, Vinson C (1998) Life without white fat: a transgenic mouse. Genes Dev 12:3168–3181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jochum W, David JP, Elliott C, Wutz A, Plenk H Jr., Matsuo K, Wagner EF (2000) Increased bone formation and osteosclerosis in mice overexpressing the transcription factor Fra-1. Nat Med 6:980–984

    Article  CAS  PubMed  Google Scholar 

  36. Longo KA, Wright WS, Kang S, Gerin I, Chiang SH, Lucas PC, Opp MR, MacDougald OA (2004) Wnt10b inhibits development of white and brown adipose tissues. J Biol Chem 279:35503–35509

    Article  CAS  PubMed  Google Scholar 

  37. Bozec A, Bakiri L, Jimenez M, Schinke T, Amling M, Wagner EF (2010) Fra-2/AP-1 controls bone formation by regulating osteoblast differentiation and collagen production. J Cell Biol 190:1093–1106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bozec A, Bakiri L, Jimenez M, Rosen ED, Catala-Lehnen P, Schinke T, Schett G, Amling M, Wagner EF (2013) Osteoblast-specific expression of Fra-2/AP-1 controls adiponectin and osteocalcin expression and affects metabolism. J Cell Sci 126:5432–5440

    Article  CAS  PubMed  Google Scholar 

  39. Wei J, Shimazu J, Makinistoglu MP, Maurizi A, Kajimura D, Zong H, Takarada T, Iezaki T, Pessin JE, Hinoi E, Karsenty G (2015) Glucose uptake and runx2 synergize to orchestrate osteoblast differentiation and bone formation. Cell 161:1576–1591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zoidis E, Ghirlanda-Keller C, Schmid C (2011) Stimulation of glucose transport in osteoblastic cells by parathyroid hormone and insulin-like growth factor I. Mol Cell Biochem 348:33–42

    Article  CAS  PubMed  Google Scholar 

  41. Fulzele K, DiGirolamo DJ, Liu Z, Xu J, Messina JL, Clemens TL (2007) Disruption of the insulin-like growth factor type 1 receptor in osteoblasts enhances insulin signaling and action. J Biol Chem 282:25649–25658

    Article  CAS  PubMed  Google Scholar 

  42. Duvillie B, Cordonnier N, Deltour L, Dandoy-Dron F, Itier JM, Monthioux E, Jami J, Joshi RL, Bucchini D (1997) Phenotypic alterations in insulin-deficient mutant mice. Proc Natl Acad Sci USA 94:5137–5140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhang M, Xuan S, Bouxsein ML, von Stechow D, Akeno N, Faugere MC, Malluche H, Zhao G, Rosen CJ, Efstratiadis A, Clemens TL (2002) Osteoblast-specific knockout of the insulin-like growth factor (IGF) receptor gene reveals an essential role of IGF signaling in bone matrix mineralization. J Biol Chem 277:44005–44012

    Article  CAS  PubMed  Google Scholar 

  44. Kesavan C, Wergedal JE, Lau KH, Mohan S (2011) Conditional disruption of IGF-I gene in type 1alpha collagen-expressing cells shows an essential role of IGF-I in skeletal anabolic response to loading. Am J Physiol Endocrinol Metab 301:E1191–1197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Govoni KE, Wergedal JE, Florin L, Angel P, Baylink DJ, Mohan S (2007) Conditional deletion of insulin-like growth factor-I in collagen type 1alpha2-expressing cells results in postnatal lethality and a dramatic reduction in bone accretion. Endocrinology 148:5706–5715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yakar S, Isaksson O (2016) Regulation of skeletal growth and mineral acquisition by the GH/IGF-1 axis: Lessons from mouse models. Growth Horm Igf Res 28:26–42

    Article  CAS  PubMed  Google Scholar 

  47. Coope A, Torsoni AS, Velloso LA (2016) MECHANISMS IN ENDOCRINOLOGY: Metabolic and inflammatory pathways on the pathogenesis of type 2 diabetes. Eur J Endocrinol 174:R175–187

    Article  CAS  PubMed  Google Scholar 

  48. Hamann C, Kirschner S, Gunther KP, Hofbauer LC (2012) Bone, sweet bone-osteoporotic fractures in diabetes mellitus. Nat Rev Endocrinol 8:297–305

    Article  CAS  PubMed  Google Scholar 

  49. Wongdee K, Charoenphandhu N (2015) Update on type 2 diabetes-related osteoporosis. World J Diabetes 6:673–678

    Article  PubMed  PubMed Central  Google Scholar 

  50. Farr JN, Khosla S (2016) Determinants of bone strength and quality in diabetes mellitus in humans. Bone 82:28–34

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Luther.

Ethics declarations

Interessenkonflikt

J. Luther und J.-P. David geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Additional information

Redaktion

A. Radbruch, Berlin

H. Schulze-Koops, München

Dies ist die dt. Übersetzung des Beitrags doi:10.1007/s00393-016-0143-x.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luther, J., David, JP. Knochen- und Fettgewebebildung. Z Rheumatol 75, 701–706 (2016). https://doi.org/10.1007/s00393-016-0166-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00393-016-0166-3

Schlüsselwörter

Keywords

Navigation