Advertisement

Zeitschrift für Rheumatologie

, Volume 76, Issue 4, pp 357–363 | Cite as

Urinary MCP-1 as a biomarker for lupus nephritis: a meta-analysis

  • Y. H. Lee
  • G. G. Song
Originalien

Abstract

Objective

This study aimed to evaluate whether urinary monocyte chemoattractant protein-1 (MCP-1) could serve as a biomarker for lupus nephritis (LN).

Methods

We performed a meta-analysis to examine the relationship between urinary MCP-1 level and LN in three comparisons: active LN versus inactive LN, active LN versus control, and inactive LN versus control.

Results

Eight studies of a total of 399 patients with LN (204 with active LN, and 195 with inactive LN) and 130 controls were available for this meta-analysis. The meta-analysis revealed that the urinary MCP-1 level was significantly higher in the active-LN group than in the inactive-LN group (standard mean difference [SMD] = 1.883, 95 % confidence interval [CI] = 0.811–2.954, p = 0.001). The meta-analysis showed that the urinary MCP-1 level was significantly higher in the active-LN group than in the control group (SMD = 3.085, 95 % CI = 1.684–4.485, p = 1.6 × 10−5). Furthermore, stratification by ethnicity showed significantly elevated urinary MCP-1 levels in the active-LN group in Caucasian, Asian, and Egyptian populations (SMD = 2.408, 95 % CI = 1.711–3.105, p < 1.0 × 10−8; SMD = 1.020, 95 % CI = 0.623–2.153, p = 4.6 × 10−7; and SMD = 7.370, 95 % CI = 1.467–2.157, p = 5.9 × 10−5, respectively). The meta-analysis indicated that the urinary MCP-1 level was also significantly higher in the inactive-LN group than in the control group (SMD = 1.812, 95 % CI = 0.628–2.996, p = 0.003).

Conclusions

The meta-analysis demonstrated that urinary MCP-1 was significantly higher in patients with active LN than in those with inactive LN and control subjects, and the patients with inactive LN showed significantly higher urinary MCP-1 levels than the controls.

Keywords

Monocyte chemoattractant protein-1 Urinalysis Systemic lupus erythematosus Inflammation Biomarkers 

MCP-1 im Urin als Biomarker bei Lupusnephritis: eine Metaanalyse

Zusammenfassung

Ziel

Ziel der vorliegenden Studie war zu untersuchen, ob monozytenchemotaktisches Protein-1 (MCP-1) als Biomarker für die Lupusnephritis (LN) dienen könnte.

Methoden

Es wurde eine Metaanalyse durchgeführt, um den Zusammenhang zwischen dem MCP-1-Wert und LN anhand dreier Vergleiche zu untersuchen: aktive LN vs. inaktive LN, aktive LN vs. Kontrollen und inaktive LN vs. Kontrollen.

Ergebnisse

Für diese Metaanalyse standen 8 Studien mit insgesamt 399 Patienten mit LN (204 mit aktiver LN und 195 mit inaktiver LN) und 130 Kontrollen zur Verfügung. Es zeigte sich in der Metaanalyse, dass der MCP-1-Wert im Urin in der Gruppe mit aktiver LN signifikant höher als in der Gruppe mit inaktiver LN war (standardisierte Mittelwertsdifferenz, SMD: 1,883; 95 %-KI: 0,811–2,954; p = 0,001). Die Metaanalyse ergab auch, dass der MCP-1-Wert im Urin in der Gruppe mit aktiver LN signifikant höher als in der Kontrollgruppe war (SMD: 3,085; 95 %-KI: 1,684–4,485; p = 1,6 × 10−5). Darüber hinaus zeigte sich bei Stratifizierung nach Ethnizität ein signifikant erhöhter MCP-1-Wert in der Gruppe mit aktiver LN bei Kaukasiern, Asiaten und Ägyptern (SMD: 2,408; 95 %-KI: 1,711–3,105; p < 1,0 × 10−8; SMD: 1,020; 95 %-KI: 0,623–2,153; p = 4,6 × 10−7 bzw. SMD: 7,370; 95 %-KI: 1,467–2,157; p = 5,9 × 10−5). Anhand der Metaanalyse war auch festzustellen, dass der MCP-1-Wert im Urin in der Gruppe mit inaktiver LN signifikant höher als in der Kontrollgruppe war (SMD: 1,812; 95 %-KI: 0,628–2,996; p = 0,003).

Schlussfolgerung

Aus der Metaanalyse ergab sich, dass der MCP-1-Wert im Urin bei Patienten mit aktiver LN signifikant höher als bei Patienten mit inaktiver LN und bei den Kontrollen war. Die Patienten mit inaktiver LN wiesen signifikant höhere MCP-1-Werte im Urin auf als die Kontrollen.

Schlüsselwörter

Monozytenchemotaktisches Protein-1 Urinstatus Systemischer Lupus erythematosus Entzündung Biomarker 

Notes

Acknowledgements

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Compliance with ethical guidelines

Conflict of interest

Y. H. Lee and G. G. Song state that there are no conflicts of interest.

The accompanying manuscript does not include studies on humans or animals.

References

  1. 1.
    Waldman M, Appel GB (2006) Update on the treatment of lupus nephritis. Kidney Int 70:1403–1412CrossRefPubMedGoogle Scholar
  2. 2.
    Zubiria Salgado A de, Herrera-Diaz C (2012) Lupus nephritis: an overview of recent findings. Autoimmune Dis 2012:1–21. doi:10.1155/2012/849684CrossRefGoogle Scholar
  3. 3.
    Deshmane SL, Kremlev S, Amini S, Sawaya BE (2009) Monocyte chemoattractant protein-1 (MCP-1): an overview. J Interferon Cytokine Res 29:313–326CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Alharazy S, Kong NC, Mohd M, Shah SA, Ba’in A, Gafor AAH (2015) Urine monocyte chemoattractant protein-1 and lupus nephritis disease activity: preliminary report of a prospective longitudinal study. Autoimmune Dis 2015:1–13. doi:10.1155/2015/962046CrossRefGoogle Scholar
  5. 5.
    Wada T, Furuichi K, Segawa-Takaeda C et al (1999) MIP-1alpha and MCP-1 contribute to crescents and interstitial lesions in human crescentic glomerulonephritis. Kidney Int 56:995–1003CrossRefPubMedGoogle Scholar
  6. 6.
    Gong JH, Ratkay LG, Waterfield JD, Clark-Lewis I (1997) An antagonist of monocyte chemoattractant protein 1 (MCP-1) inhibits arthritis in the MRL-lpr mouse model. J Exp Med 186:131–137CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Mok CC (2010) Biomarkers for lupus nephritis: a critical appraisal. J Biomed Biotechnol 2010:1–11. doi:10.1155/2010/638413CrossRefGoogle Scholar
  8. 8.
    Wada T, Yokoyama H, Su SB et al (1996) Monitoring urinary levels of monocyte chemotactic and activating factor reflects disease activity of lupus nephritis. Kidney Int 49:761–767CrossRefPubMedGoogle Scholar
  9. 9.
    Ghobrial EE, El Hamshary AA, Mohamed AG, Abd El Raheim YA, Talaat AA (2015) Urinary monocyte chemoattractant protein-1 as a biomarker of lupus nephritis activity in children. Saudi J Kidney Dis Transpl 26:507–515CrossRefPubMedGoogle Scholar
  10. 10.
    Susianti H, Iriane VM, Dharmanata S et al (2015) Analysis of urinary TGF-beta1, MCP-1, NGAL, and IL-17 as biomarkers for lupus nephritis. Pathophysiology 22:65–71CrossRefPubMedGoogle Scholar
  11. 11.
    Rosa RF, Takei K, Araujo NC, Loduca SM, Szajubok JC, Chahade WH (2012) Monocyte chemoattractant-1 as a urinary biomarker for the diagnosis of activity of lupus nephritis in brazilian patients. J Rheumatol 39:1948–1954CrossRefPubMedGoogle Scholar
  12. 12.
    Xuejing Z, Jiazhen T, Jun L, Xiangqing X, Shuguang Y, Fuyou L (2012) Urinary TWEAK level as a marker of lupus nephritis activity in 46 cases. J Biomed Biotechnol 2012:1–7. doi:10.1155/2012/359647CrossRefGoogle Scholar
  13. 13.
    Watson L, Midgley A, Pilkington C et al (2012) Urinary monocyte chemoattractant protein 1 and alpha 1 acid glycoprotein as biomarkers of renal disease activity in juvenile-onset systemic lupus erythematosus. Lupus 21:496–501CrossRefPubMedGoogle Scholar
  14. 14.
    El-Shehaby A, Darweesh H, El-Khatib M et al (2011) Correlations of urinary biomarkers, TNF-like weak inducer of apoptosis (TWEAK), osteoprotegerin (OPG), monocyte chemoattractant protein-1 (MCP-1), and IL-8 with lupus nephritis. J Clin Immunol 31:848–856CrossRefPubMedGoogle Scholar
  15. 15.
    Noris M, Bernasconi S, Casiraghi F et al (1995) Monocyte chemoattractant protein-1 is excreted in excessive amounts in the urine of patients with lupus nephritis. Lab Invest 73:804–809PubMedGoogle Scholar
  16. 16.
    Lee YH, Woo JH, Choi SJ, Ji JD, Song GG (2010) Induction and maintenance therapy for lupus nephritis: a systematic review and meta-analysis. Lupus 19:703–710CrossRefPubMedGoogle Scholar
  17. 17.
    Lee YH, Woo JH, Choi SJ, Ji JD, Song GG (2010) Associations between osteoprotegerin polymorphisms and bone mineral density: a meta-analysis. Mol Biol Rep 37:227–234CrossRefPubMedGoogle Scholar
  18. 18.
    Hozo SP, Djulbegovic B, Hozo I (2005) Estimating the mean and variance from the median, range, and the size of a sample. BMC Med Res Methodol 5:13CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Wells G, Shea B, O’connell D et al (2000) The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. Eur J Epidemiol 25(9):603–605Google Scholar
  20. 20.
    Egger M, Smith GD, Phillips AN (1997) Meta-analysis: principles and procedures. BMJ 315:1533–1537CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Trials 7:177–188CrossRefPubMedGoogle Scholar
  22. 22.
    Higgins JP, Thompson SG (2002) Quantifying heterogeneity in a meta-analysis. Stat Med 21:1539–1558CrossRefPubMedGoogle Scholar
  23. 23.
    Egger M, Smith GD, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315:629–634CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Duval S, Tweedie R (2000) Trim and fill: A simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics 56:455–463CrossRefPubMedGoogle Scholar
  25. 25.
    Illei GG, Tackey E, Lapteva L, Lipsky PE (2004) Biomarkers in systemic lupus erythematosus. I. general overview of biomarkers and their applicability. arthritis and rheumatism. Arthritis Care Res 50:1709–1720CrossRefGoogle Scholar
  26. 26.
    Nowling TK, Gilkeson GS (2011) Mechanisms of tissue injury in lupus nephritis. Arthritis Res Ther 13:250CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Rovin BH, Song H, Birmingham DJ, Hebert LA, Yu CY, Nagaraja HN (2005) Urine chemokines as biomarkers of human systemic lupus erythematosus activity. J Am Soc Nephrol 16:467–473CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Division of Rheumatology, Department of Internal Medicine, Korea University Medical CenterKorea University College of MedicineSeoulKorea

Personalised recommendations