Skip to main content

Advertisement

Log in

Rekrutierung osteogener Zellen an den Ort der Knochenbildung während Entwicklung und Frakturheilung

Recruitment of osteogenic cells to bone formation sites during development and fracture repair – German Version

  • Neues aus der Forschung
  • Published:
Zeitschrift für Rheumatologie Aims and scope Submit manuscript

Zusammenfassung

Die Rekrutierung von Zellen der Osteoblastenlinie an den Ort der Knochenbildung ist wesentlich für die skeletale Entwicklung und Frakturheilung. In sich entwickelnden Knochen wandern Osteoprogenitorzellen in das Knorpelgewebe ein und bilden dort das primäre Ossifikationszentrum. In ähnlicher Weise infiltrieren und besiedeln osteogene Zellen das Kallusgewebe, das nach einer Verletzung gebildet wird. Ordnungsgemäße Knochenentwicklung und erfolgreiche Frakturheilung ist daher auf kontrollierte zeitliche und räumliche Orientierungssignale angewiesen. Dadurch werden die Zellen an die Stellen geführt, an denen die Neubildung von Knochen notwendig ist. Einige daran beteiligte zelluläre Mechanismen und molekulare Signalwege sind bereits aufgeklärt.

Abstract

Recruitment of osteoblast lineage cells to their bone-forming locations is essential for skeletal development and fracture healing. In developing bones, osteoprogenitor cells invade the cartilage mold to establish the primary ossification center. Similarly, osteogenic cells infiltrate and populate the callus tissue that is formed following an injury. Proper bone development and successful fracture repair must, therefore, rely on controlled temporal and spatial navigation cues guiding the cells to the sites where new bone formation is needed. Some cellular mechanisms and molecular pathways involved have been elucidated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. Allen MR, Burr DB (2009) The pathogenesis of bisphosphonate-related osteonecrosis of the jaw: so many hypotheses, so few data. J Oral Maxillofac Surg 67:61–70

    Article  PubMed  Google Scholar 

  2. Burkhardt R, Kettner G, Bohm W et al (1987) Changes in trabecular bone, hematopoiesis and bone marrow vessels in aplastic anemia, primary osteoporosis, and old age: a comparative histomorphometric study. Bone 8:157–164

    Article  CAS  PubMed  Google Scholar 

  3. Ding WG, Wei ZX, Liu JB (2011) Reduced local blood supply to the tibial metaphysis is associated with ovariectomy-induced osteoporosis in mice. Connect Tissue Res 52:25–29

    Article  PubMed  Google Scholar 

  4. Dirckx N, Van Hul M, Maes C (2013) Osteoblast recruitment to sites of bone formation in skeletal development, homeostasis, and regeneration. Birth Defects Res C Embryo Today 99:170–191

    Article  CAS  PubMed  Google Scholar 

  5. Greenbaum A, Hsu YM, Day RB et al (2013) CXCL12 in early mesenchymal progenitors is required for haematopoietic stem-cell maintenance. Nature 495:227–230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kristensen HB, Andersen TL, Marcussen N et al (2013) Increased presence of capillaries next to remodeling sites in adult human cancellous bone. J Bone Miner Res 28:574–585

    Article  CAS  PubMed  Google Scholar 

  7. Kusumbe AP, Ramasamy SK, Adams RH (2014) Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone. Nature 507:323–328

    Article  CAS  PubMed  Google Scholar 

  8. Lafage-Proust MH, Roche B, Langer M et al (2015) Assessment of bone vascularization and its role in bone remodeling. Bonekey Rep 4:662

    Article  CAS  PubMed  Google Scholar 

  9. Liu X, Tu Y, Zhang L et al (2014) Prolyl hydroxylase inhibitors protect from the bone loss in ovariectomy rats by increasing bone vascularity. Cell Biochem 69:141–149

    Article  CAS  Google Scholar 

  10. Maes C (2013) Role and regulation of vascularization processes in endochondral bones. Calcif Tissue Int 92:307–323

    Article  CAS  PubMed  Google Scholar 

  11. Maes C, Carmeliet G, Schipani E (2012) Hypoxia-driven pathways in bone development, regeneration and disease. Nat Rev Rheumatol 8:358–366

    Article  CAS  PubMed  Google Scholar 

  12. Maes C, Goossens S, Bartunkova S et al (2010) Increased skeletal VEGF enhances beta-catenin activity and results in excessively ossified bones. EMBO J 29:424–441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Maes C, Kobayashi T, Selig MK et al (2010) Osteoblast precursors, but not mature osteoblasts, move into developing and fractured bones along with invading blood vessels. Dev Cell 19:329–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mekraldi S, Lafage-Proust MH, Bloomfield S et al (2003) Changes in vasoactive factors associated with altered vessel morphology in the tibial metaphysis during ovariectomy-induced bone loss in rats. Bone 32:630–641

    Article  CAS  PubMed  Google Scholar 

  15. Mendelson A, Frenette PS (2014) Hematopoietic stem cell niche maintenance during homeostasis and regeneration. Nat Med 20:833–846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mendez-Ferrer S, Michurina TV, Ferraro F et al (2010) Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 466:829–834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mizoguchi T, Pinho S, Ahmed J et al (2014) Osterix marks distinct waves of primitive and definitive stromal progenitors during bone marrow development. Dev Cell 29:340–349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ono N, Ono W, Mizoguchi T et al (2014) Vasculature-associated cells expressing nestin in developing bones encompass early cells in the osteoblast and endothelial lineage. Dev Cell 29:330–339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ramasamy SK, Kusumbe AP, Wang L et al (2014) Endothelial Notch activity promotes angiogenesis and osteogenesis in bone. Nature 507:376–380

    Article  CAS  PubMed  Google Scholar 

  20. Rankin EB, Wu C, Khatri R et al (2012) The HIF Signaling Pathway in Osteoblasts Directly Modulates Erythropoiesis through the Production of EPO. Cell 149:63–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Regan JN, Lim J, Shi Y et al (2014) Up-regulation of glycolytic metabolism is required for HIF1alpha-driven bone formation. Proc Natl Acad Sci U S A 111:8673–8678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sacchetti B, Funari A, Michienzi S et al (2007) Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell 131:324–336

    Article  CAS  PubMed  Google Scholar 

  23. Semenza GL (2012) Hypoxia-inducible factors in physiology and medicine. Cell 148:399–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Shen X, Wan C, Ramaswamy G et al (2009) Prolyl hydroxylase inhibitors increase neoangiogenesis and callus formation following femur fracture in mice. J Orthop Res 27:1298–1305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ström (2011) Osteoporosis: burden, health care provision and opportunities in the EU. Arch Osteoporos 6:94

    Article  Google Scholar 

  26. Wan C, Gilbert SR, Wang Y et al (2008) Activation of the hypoxia-inducible factor-1alpha pathway accelerates bone regeneration. Proc Natl Acad Sci U S A 105:686–691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang Y, Wan C, Deng L et al (2007) The hypoxia-inducible factor alpha pathway couples angiogenesis to osteogenesis during skeletal development. J Clin Invest 117:1616–1626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang YX, Griffith JF, Kwok AW et al (2009) Reduced bone perfusion in proximal femur of subjects with decreased bone mineral density preferentially affects the femoral neck. Bone 45:711–715

    Article  PubMed  Google Scholar 

  29. Yang L, Tsang KY, Tang HC et al (2014) Hypertrophic chondrocytes can become osteoblasts and osteocytes in endochondral bone formation. Proc Natl Acad Sci U S A 111:12097–12102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhou BO, Yue R, Murphy MM et al (2014) Leptin-receptor-expressing mesenchymal stromal cells represent the main source of bone formed by adult bone marrow. Cell Stem Cell 15:154–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhou X, Von Der Mark K, Henry S et al (2014) Chondrocytes transdifferentiate into osteoblasts in endochondral bone during development, postnatal growth and fracture healing in mice. PLoS Genet 10:e1004820

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Danksagung und Angaben zur Finanzierung

Die Forschungsarbeiten der Autoren werden mit Fördermitteln des Europäischen Forschungsrats (ERC Starting Grant 282131 an C. Maes) im Rahmen des 7. Forschungsrahmenprogramms der Europäischen Union (FP7/2007–2013) sowie mit Geldern der KU Leuven und der Flämischen Stiftung für Wissenschaftliche Forschung (FWO; Fördermittel an C. Maes) unterstützt. A.-M. Böhm ist Postdoktorand der FWO, N. Dirckx erhält ein Promotionsstipendium der Behörde für Innovation durch Wissenschaft und Technik (IWT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Maes.

Ethics declarations

Interessenkonflikt

A.-M. Böhm, N. Dirckx und C. Maes geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Additional information

Redaktion

A. Radbruch, Berlin

H. Schulze-Koops, München

Dieser Beitrag ist die deutsche Version von Recruitment of osteogenic cells to bone formation sites during development and fracture repair, DOI 10.1007/s00393-015-1574-5.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Böhm, AM., Dirckx, N. & Maes, C. Rekrutierung osteogener Zellen an den Ort der Knochenbildung während Entwicklung und Frakturheilung. Z Rheumatol 75, 316–321 (2016). https://doi.org/10.1007/s00393-016-0065-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00393-016-0065-7

Schlüsselwörter

Keywords

Navigation