Skip to main content

Advertisement

Log in

Polymerasekettenreaktion-gestützte Erregerdiagnostik in der Rheumatologie

PCR-based detection of pathogens in clinical rheumatology

  • Leitthema
  • Published:
Zeitschrift für Rheumatologie Aims and scope Submit manuscript

Zusammenfassung

In der Differenzialdiagnostik müssen Rheumatologen häufig neben autoimmunbedingten Erkrankungen auch Infektionen (z. B. eine Lyme-Arthritis) oder reaktive Krankheitsbilder (z. B. eine reaktive Arthritis nach einem urogenitalen bakteriellen Infekt) in Erwägung ziehen. Des Weiteren können Infektionen mit atypischer Präsentation oder mit atypischen Erregern (opportunistische Infektionen) unter der immunsuppressiven Therapie von rheumatischen Erkrankungen auftreten. In der mikrobiologischen Diagnostik kommen hierfür nicht nur konventionelle Kulturverfahren, sondern zunehmend auch PCR (Polymerasekettenreaktion)-basierte Verfahren zum direkten Nachweis von Erregern zum Einsatz. Ziel dieser Übersicht ist es, in der Rheumatologie häufig eingesetzte PCR-Verfahren vorzustellen und ihre Vorteile bzw. Grenzen im Vergleich zu kulturellen Nachweisverfahren aufzuzeigen.

Abstract

In the differential diagnostics of autoimmune-mediated rheumatic diseases, rheumatologists often have to consider infections (e. g. Lyme arthritis) or reactive diseases (e. g. reactive arthritis after urogenital bacterial infections). Furthermore, infections with an atypical presentation or caused by atypical pathogens (opportunistic infections) can complicate the immunosuppressive therapy of autoimmune diseases. For this purpose not only conventional microbiological culture methods but also PCR-based methods are increasingly being applied for the direct detection of pathogens in clinical specimens. The aim of this overview is to present commonly used PCR methods in the clinical practice of rheumatology and to describe their benefits and limitations compared to culture-based detection methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Azoulay E, Bergeron A, Chevret S et al (2009) Polymerase chain reaction for diagnosing pneumocystis pneumonia in non-HIV immunocompromised patients with pulmonary infiltrates. Chest 135:655–661

    Article  CAS  PubMed  Google Scholar 

  2. Bruhlmann P, Michel BA, Altwegg M (2000) Diagnosis and therapy monitoring of Whipple’s arthritis by polymerase chain reaction. Rheumatology (Oxford) 39:1427–1428

    Article  CAS  Google Scholar 

  3. Carter JD, Espinoza LR, Inman RD et al (2010) Combination antibiotics as a treatment for chronic Chlamydia-induced reactive arthritis: a double-blind, placebo-controlled, prospective trial. Arthritis Rheum 62:1298–1307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cassinotti P, Bas S, Siegl G et al (1995) Association between human parvovirus B19 infection and arthritis. Ann Rheum Dis 54:498–500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Centers for Disease C, Prevention (2014) Recommendations for the laboratory-based detection of Chlamydia trachomatis and Neisseria gonorrhoeae – 2014. MMWR Recomm Rep 63:1–19

    Google Scholar 

  6. European Association for the Study of The L (2012) EASL clinical practice guidelines: Management of chronic hepatitis B virus infection. J Hepatol 57:167–185

    Article  Google Scholar 

  7. Fendler C, Laitko S, Sorensen H et al (2001) Frequency of triggering bacteria in patients with reactive arthritis and undifferentiated oligoarthritis and the relative importance of the tests used for diagnosis. Ann Rheum Dis 60:337–343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gaude M, Tebib J, Puechal X (2015) Atypical focal forms of Whipple’s disease seen by rheumatologists. Joint Bone Spine 82:56–59

    Article  PubMed  Google Scholar 

  9. Gunther U, Moos V, Offenmuller G et al (2015) Gastrointestinal diagnosis of classical Whipple disease: clinical, endoscopic, and histopathologic features in 191 patients. Medicine (Baltimore) 94:e714

    Article  Google Scholar 

  10. Hagel S, Epple HJ, Feurle GE et al (2015) S2k-Leitlinie Gastrointestinale Infektionen und Morbus Whipple. Z Gastroenterol 53:418–459

    Article  CAS  PubMed  Google Scholar 

  11. Hui CK, Cheung WW, Zhang HY et al (2006) Kinetics and risk of de novo hepatitis B infection in HBsAg-negative patients undergoing cytotoxic chemotherapy. Gastroenterology 131:59–68

    Article  CAS  PubMed  Google Scholar 

  12. Katsuyama T, Saito K, Kubo S et al (2014) Prophylaxis for Pneumocystis pneumonia in patients with rheumatoid arthritis treated with biologics, based on risk factors found in a retrospective study. Arthritis Res Ther 16:R43

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kleppe K, Ohtsuka E, Kleppe R et al (1971) Studies on polynucleotides. XCVI. Repair replications of short synthetic DNA’s as catalyzed by DNA polymerases. J Mol Biol 56:341–361

    Article  CAS  PubMed  Google Scholar 

  14. Krause A, Herzer P (2005) Frühdiagnostik der Lyme-Arthritis. Z Rheumatol 64:531–537

    Article  CAS  PubMed  Google Scholar 

  15. Kvien TK, Gaston JS, Bardin T et al (2004) Three month treatment of reactive arthritis with azithromycin: a EULAR double blind, placebo controlled study. Ann Rheum Dis 63:1113–1119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mcloughlin KS (2011) Microarrays for pathogen detection and analysis. Brief Funct Genomics 10:342–353

    Article  PubMed  PubMed Central  Google Scholar 

  17. Moter A, Schmiedel D, Petrich A et al (2013) Validation of an rpoB gene PCR assay for detection of Tropheryma whipplei: 10 years’ experience in a National Reference Laboratory. J Clin Microbiol 51:3858–3861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mullis K, Faloona F, Scharf S et al (1986) Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harb Symp Quant Biol Pt 1:263–273

    Article  Google Scholar 

  19. O’duffy JD, Griffing WL, Li CY et al (1999) Whipple’s arthritis: direct detection of Tropheryma whippelii in synovial fluid and tissue. Arthritis Rheum 42:812–817

    Article  PubMed  Google Scholar 

  20. Reischl U, Drosten C, Geißdörfer W et al (2011) Mikrobiologisch-infektiologische Qualitätsstandards (MiQ) Qualitätsstandards in der mikrobiologisch-infektiologischen Diagnostik. In: Podbielski A, Herrmann M, Kniehl E, Mauch H, Rüssmann H (Hrsg) MiQ 1: Nukleinsäure-Amplifikationstechniken (NAT), 3. Aufl. Urban & Fischer, München, S 1–80

    Google Scholar 

  21. Relman DA, Schmidt TM, Macdermott RP et al (1992) Identification of the uncultured bacillus of Whipple’s disease. N Engl J Med 327:293–301

    Article  CAS  PubMed  Google Scholar 

  22. Sager K, Alam S, Bond A et al (2015) Review article: cytomegalovirus and inflammatory bowel disease. Aliment Pharmacol Ther 41:725–733

    Article  CAS  PubMed  Google Scholar 

  23. Schneider T, Moos V, Loddenkemper C et al (2008) Whipple’s disease: new aspects of pathogenesis and treatment. Lancet Infect Dis 8:179–190

    Article  CAS  PubMed  Google Scholar 

  24. Siala M, Jaulhac B, Gdoura R et al (2008) Analysis of bacterial DNA in synovial tissue of Tunisian patients with reactive and undifferentiated arthritis by broad-range PCR, cloning and sequencing. Arthritis Res Ther 10:R40

    Article  PubMed  PubMed Central  Google Scholar 

  25. Slavov SN, Kashima S, Pinto AC et al (2011) Human parvovirus B19: general considerations and impact on patients with sickle-cell disease and thalassemia and on blood transfusions. FEMS Immunol Med Microbiol 62:247–262

    Article  CAS  PubMed  Google Scholar 

  26. Verdier I, Gayet-Ageron A, Ploton C et al (2005) Contribution of a broad range polymerase chain reaction to the diagnosis of osteoarticular infections caused by Kingella kingae: description of twenty-four recent pediatric diagnoses. Pediatr Infect Dis J 24:692–696

    Article  PubMed  Google Scholar 

  27. Woo PC, Lau SK, Teng JL et al (2008) Then and now: use of 16S rDNA gene sequencing for bacterial identification and discovery of novel bacteria in clinical microbiology laboratories. Clin Microbiol Infect 14:908–934

    Article  CAS  PubMed  Google Scholar 

  28. Yang S, Ramachandran P, Hardick A et al (2008) Rapid PCR-based diagnosis of septic arthritis by early Gram-type classification and pathogen identification. J Clin Microbiol 46:1386–1390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zeidler H, Hudson AP (2014) New insights into Chlamydia and arthritis. Promise of a cure? Ann Rheum Dis 73:637–644

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Ehrenstein.

Ethics declarations

Interessenkonflikt

B. Ehrenstein und U. Reischl geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Additional information

Redaktion

M. Fleck, Bad Abbach

T. Dörner, Berlin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ehrenstein, B., Reischl, U. Polymerasekettenreaktion-gestützte Erregerdiagnostik in der Rheumatologie. Z Rheumatol 75, 381–388 (2016). https://doi.org/10.1007/s00393-016-0058-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00393-016-0058-6

Schlüsselwörter

Keywords

Navigation