Skip to main content

Advertisement

Log in

JHDM1D and HDAC1–3 mRNA expression levels in peripheral blood mononuclear cells of patients with systemic lupus erythematosus

mRNA-Expressionslevel von JHDM1D und HDAC1–3 in peripheren mononukleären Blutzellen von Patienten mit systemischem Lupus eythematodes

  • Originalien
  • Published:
Zeitschrift für Rheumatologie Aims and scope Submit manuscript

Abstract

Background

Systemic lupus erythematosus (SLE) is a chronic relapsing autoimmune disease characterized by production of autoantibodies against a series of nuclear antigens and by chronic inflammation. The etiology of SLE is the result of interactions between genetic, epigenetic, hormonal, and environmental factors. Changes in histone acetylation and methylation contribute to structural chromatin modifications.

Objective

We studied the histone demethylase JHDM1D and histone deacetylases HDAC1, HDAC2, and HDAC3 transcript levels in peripheral blood mononuclear cells (PBMCs) from patients diagnosed with systemic lupus erythematosus (SLE). Furthermore, the association of JHDM1D, HDAC1, HDAC2, and HDAC3 transcript levels with gender, age, and major clinical manifestations were analyzed.

Materials and methods

Real-time quantitative polymerase chain reaction (RQ-PCR) analysis was used to determine JHDM1D, HDAC1, HDAC2, and HDAC3 mRNA expression levels in peripheral blood mononuclear cells (PBMCs) from 30 patients with SLE and 36 healthy controls.

Results

Significantly lower HDAC2 transcript levels (p = 0.006785) and significantly higher JHDM1D (p = 0.0000002) and HDAC1 (p = 0.010581) transcript levels in SLE patients were observed compared with healthy controls. Higher JHDM1D mRNA expression was detected in active SLE patients when compared with inactive patients (p = 0.005). Furthermore, the JHDM1D transcript levels were positively correlated with disease activity (r s = 0.368, p = 0.045), while HDAC2 mRNA expression was positively correlated with disease duration (r s = 0.502, p = 0.0047).

Conclusion

Our analyses confirmed the importance of epigenetic alterations (histone demethylation and acetylation) in SLE etiology. Moreover, our results suggest that the presence of some clinical manifestations, like hematological disease and anti-Ro antibody, might be associated with the dysregulation of histone demethylase and deacetylases mRNA expression levels.

Zusammenfassung

Hintergrund

Der systemische Lupus eythematodes (SLE) ist eine rezidivierende chronische Autoimmunerkrankung, welche durch die Produktion von Autoantikörpern gegen eine Reihe von nukleären Antigenen sowie durch chronische Entzündung charakterisiert ist. Die Ätiologie des SLE ist das Ergebnis von Interaktionen zwischen genetischen, epigenetischen, hormonellen und Umweltfaktoren. Veränderungen in der Histon-Acetylation und -Methylation tragen zu strukturellen Chromatin-Modifikationen bei.

Zielstellung

Wir untersuchten die Transkriptionslevel der Histon-Demethylase JHDM1D sowie der Histon-Deacetylasen HDAC1, HDAC2 und HDAC3 in peripheren mononukleären Blutzellen (PBMC) bei Patienten mit diagnostiziertem SLE. Des Weiteren wurde der Zusammenhang der JHDM1D-, HDAC1-, HDAC2- und HDAC3-Transkriptionslevel mit Geschlecht, Alter und wichtigen klinischen Manifestationen analysiert.

Material und Methoden

Eine Analyse der quantitativen Echtzeit-Polymerase-Kettenreaktion (RQ-PCR) wurde verwendet, um die JHDM1D-, HDAC1-, HDAC2- und HDAC3-Expressionslevel in PBMC von 30 Patienten mit SLE und einer Kontrollgruppe von 36 gesunden Probanden zu bestimmen.

Ergebnisse

Bei SLE-Patienten wurden im Vergleich zur Kontrollgruppe signifikant niedrigere HDAC2-Transkriptionslevel (p = 0,006785) und signifikant höhere JHDM1D-Transkriptionslevel (p = 0,0000002) sowie HDAC1-Transkriptionslevel (p = 0,010581) festgestellt. Aktive SLE-Patienten wiesen im Vergleich zu nichtaktiven Patienten eine höhere JHDM1D-mRNA-Expression auf (p = 0,005). Zudem korrelierten die JHDM1D-Transkriptionslevel positiv mit der Krankheitsaktivität (r s= 0,368; p = 0,045), während die HDAC2-mRNA-Expression positiv mit der Krankheitsdauer korrelierte (r s= 0,502; p = 0,0047).

Schlussfolgerung

Unsere Analysen bestätigten die Wichtigkeit epigenetischer Veränderungen (Histon-Demethylation und -Acetylation) in der SLE-Ätiologie. Darüber hinaus zeigen unsere Ergebnisse, dass das Vorliegen einiger klinischer Manifestationen, wie eine hämatologische Erkrankung und Anti-Ro-Antikörper, mit einer Dysregulation der Transkriptionslevel der Histon-Demethylase sowie der Histon-Deacetylasen assoziiert sein könnte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Guerra SG, Vyse TJ, Cunninghame Graham DS (2012) The genetics of lupus: a functional perspective. Arthritis Res Ther 14(3):211

    Article  PubMed Central  PubMed  Google Scholar 

  2. Lau CS, Lin G, Mok M (2006) Ethic and geographical differences in systemic lupus erythematosus: an overviev. Lupus 15:715–719

    Article  CAS  PubMed  Google Scholar 

  3. Deapen D, Escalante A, Weinrib L et al (1992) A revised of twin concordance in systemic lupus erythematosus. Arthritis Rheum 35(3):311–318

    Article  CAS  PubMed  Google Scholar 

  4. Simpson ER (2003) Sources of estrogen and their importance. J Steroid Biochem Mol Biol 86:225–230

    Article  CAS  PubMed  Google Scholar 

  5. Al-Mogairen SM, Al-Arfaj AS, Meo SA et al (2009) Induction of autoimmunity in Brown Norway rats by oral and parenteral administration of sodium silicate. Lupus 18:413–417

    Article  CAS  PubMed  Google Scholar 

  6. Finckh A, Cooper GS, Chibnik LB et al (2006) Occupational silica and solvent exposures and risk of systemic lupus erythematosus in urban women. Arthritis Rheum 54:3648–3654

    Article  PubMed  Google Scholar 

  7. Li J, McMurray RW (2009) Effects of chronic exposure to DDT and TCDD on disease activity in murine systemic lupus erythematosus. Lupus 18:941–949

    Article  CAS  PubMed  Google Scholar 

  8. Kamen DL (2014) Environmental influences on systemic lupus erythematosus expression. Rheum Dis Clin North Am 40(3):401–412

    Article  PubMed Central  PubMed  Google Scholar 

  9. Costa-Reis P, Sullivan KE (2013) Genetics and epigenetics of systemic lupus erythematosus. Curr Rheumatol Rep 15:369

    Article  PubMed  Google Scholar 

  10. Cui Y, Sheng Y, Zhang X (2013) Genetic susceptibility to SLE: recent progress from GWAS. J Autoimmun 41:25–33

    Article  CAS  PubMed  Google Scholar 

  11. De Azevedo Silva J, Addobbati C, Sandrin-Garcia P, Crovella S (2014) Systemic Lupus Erythematosus: old and new susceptibility genes versus clinical manifestations. Curr Genomics 15(1):52–65

    Article  Google Scholar 

  12. Tsokos GC (2011) Systemic lupus erythematosus. N Engl J Med 365:2110–2121

    Article  CAS  PubMed  Google Scholar 

  13. Wolffe AP, Matzke MA (1999) Epigenetics: regulation through repression. Science 286(5439):481–486

    Article  CAS  PubMed  Google Scholar 

  14. Hu N, Qiu X, Luo Y et al (2008) Abnormal histone modification patterns in lupus CD4+ T cells. J Rheumatol 35:804–810

    CAS  PubMed  Google Scholar 

  15. Tsukada Y, Ishitani T, Nakayama KI (2010) KDM7 is a dual demethylase for histone H3 Lys 9 and Lys 27 and functions in brain development. Genes Dev 24(5):432–437

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Tsukada Y, Fang J, Erdjument-Bromage H et al (2006) Histone demethylation by a family of JmjC domain-containing proteins. Nature 439:811–816

    Article  CAS  PubMed  Google Scholar 

  17. Fortschegger K, Graaf P de, Outchkourov NS et al (2010) PHF8 targets histone methylation and RNA polymerase II to activate transcription. Mol Cell Biol 30(13):3286–3298

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Reilly CM, Regna N, Mishra N (2011) HDAC inhibition in lupus models. Mol Med 17(5–6):417–425

  19. Montgomery RL, Davis CA, Potthoff MJ et al (2007) Histone deacetylases 1 and 2 redundantly regulate cardiac morphogenesis, growth, and contractility. Genes Dev 21(14):1790–1802

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Lu Y, Ahmed S, Harari F, Vahter M (2015) Impact of Ficoll density gradient centrifugation on major and trace element concentrations in erythrocytes and blood plasma. J Trace Elem Med Biol 29:249–254

    Article  CAS  PubMed  Google Scholar 

  21. Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162(1):156–159

    Article  CAS  PubMed  Google Scholar 

  22. Meda F, Folci M, Baccarelli A, Selmi C (2011) The epigenetics of autoimmunity. Cell Mol Immunol 8(3):226–236

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Patel DR, Richardson BC (2010) Epigenetic mechanisms in lupus. Curr Opin Rheumatol 22(5):478–482

    Article  CAS  PubMed  Google Scholar 

  24. Margueron R, Trojer P, Reinberg D (2005) The key to development: interpreting the histone code? Curr Opin Genet Dev 15:163–176

    Article  CAS  PubMed  Google Scholar 

  25. Bauer UM, Daujat S, Nielsen SJ et al (2002) Methylation at arginine 17 of histone H3 is linked to gene activation. EMBO Rep 3(1):39–44

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Wang H, Huang ZQ, Xia L et al (2001) Methylation of histone H4 at arginine 3 facilitating transcriptional activation by nuclear hormone receptor. Science 293(5531):853–857

    Article  CAS  PubMed  Google Scholar 

  27. Horton JR, Upadhyay AK, Qi HH et al (2010) Enzymatic and structural insights for substrate specificity of a family of jumonji histone lysine demethylases. Nat Struct Mol Biol 17(1):38–43

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Johansson C, Tumber A, Che K et al (2014) The roles of Jumonji-type oxygenases in human disease. Epigenomics 6(1):89–120

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Huang C, Xiang Y, Wang Y et al (2010) Dual-specificity histone demethylase KIAA1718 (KDM7A) regulates neural differentiation through FGF4. Cell Res 20(2):154–165

    Article  CAS  PubMed  Google Scholar 

  30. Arteaga MF, Mikesch JH, Qiu J et al (2013) The histone demethylase PHF8 governs retinoic acid response in acute promyelocytic leukemia. Cancer Cell 23(3):376–389

    Article  CAS  PubMed  Google Scholar 

  31. Frycz BA, Jagodziński PP (2014) Expressions of genes encoding steroidogenic enzymes and their role in prostate carcinogenesis. J Med Sci 1(83):73–80

    Google Scholar 

  32. Xiang Y, Zhu Z, Han G et al (2007) JMJD3 is a histone H3K27 demethylase. Cell Res 17(10):850–857

    Article  CAS  PubMed  Google Scholar 

  33. Wei Y, Xia W, Zhang Z et al (2008) Loss of trimethylation at lysine 27 of histone H3 is a predictor of poor outcome in breast, ovarian, and pancreatic cancers. Mol Carcinog 47(9):701–706

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Park YS, Jin MY, Kim YJ et al (2008) The global histone modification pattern correlates with cancer recurrence and overall survival in gastric adenocarcinoma. Ann Surg Oncol 15(7):1968–1976

    Article  PubMed  Google Scholar 

  35. Stender JD, Pascual G, Liu W et al (2012) Control of proinflammatory gene programs by regulated trimethylation and demethylation of histone H4K20. Mol Cell 48(1):28–38

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Liu W, Tanasa B, Tyurina OV et al (2010) PHF8 mediates histone H4 lysine 20 demethylation events involved in cell cycle progression. Nature 466:508–512

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Qi HH, Sarkissian M, Hu GQ et al (2010) Histone H4K20/H3K9 demethylase PHF8 regulates zebrafish brain and craniofacial development. Nature 466:503–507

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Ito K, Lim S, Caramori G et al (2001) Cigarette smoking reduces histone deacetylase 2 expression, enhances cytokine expression, and inhibits glucocorticoid actions in alveolar macrophages. FASEB J 15:1110–1112

    CAS  PubMed  Google Scholar 

  39. Ito K, Yamamura S, Essilfie-Quaye S et al (2006) Histone deacetylase 2-mediated deacetylation of the glucocorticoid receptor enables NF-kB suppression. J Exp Med 203:7–13

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Grozinger CM, Schreiber SL (2002) Deacetylase enzymes: biological functions and the use of small-molecule inhibitors. Chem Biol 9(1):3–16

    Article  CAS  PubMed  Google Scholar 

  41. Zhang Z, Song L, Maurer K et al (2010) Global H4 acetylation analysis by ChIP-chip in systemic lupus erythematosus monocytes. Genes Immun 11(2):124–133

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Rönnblom L, Pascual V (2008) The innate immune system in SLE: type I interferons and dendritic cells. Lupus 17(5):394–399

    Article  PubMed Central  PubMed  Google Scholar 

  43. Lourenço EV, La Cava A (2009) Cytokines in systemic lupus erythematosus. Curr Mol Med 9(3):242–254

    Article  PubMed Central  PubMed  Google Scholar 

  44. Baechler EC, Batliwalla FM, Karypis G et al (2003) Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. Proc Natl Acad Sci U S A 100(5):2610–2615

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by grant No 502-01-01124182-07474, Poznań University of Medical Sciences.

Compliance with ethical guidelines

Conflict of interest. M.J. Nawrocki, A.J. Strugała, P. Piotrowski, M. Wudarski, M. Olesińska, and P.P. Jagodziński state that there are no conflicts of interest.

All studies on humans described in the present manuscript were carried out with the approval of the responsible ethics committee and in accordance with national law and the Helsinki Declaration of 1975 (in its current, revised form). Informed consent was obtained from all patients included in studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.J. Nawrocki.

Electronic supplementary material

393_2015_1619_MOESM1_ESM.pdf

Associations of HDAC1, HDAC2, HDAC3 and JHDM1D mRNA levels with major clinical manifestations of SLE patients (PDF 100kB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nawrocki, M., Strugała, A., Piotrowski, P. et al. JHDM1D and HDAC1–3 mRNA expression levels in peripheral blood mononuclear cells of patients with systemic lupus erythematosus . Z Rheumatol 74, 902–910 (2015). https://doi.org/10.1007/s00393-015-1619-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00393-015-1619-9

Keywords

Schlüsselwörter

Navigation