Skip to main content

Advertisement

Log in

Translationale Forschung in der pädiatrischen Rheumatologie

Aktuelle Forschungsansätze zum angeborenen Immunsystem

Translational research in pediatric rheumatology

Current research approaches to the innate immune system

  • Leitthema
  • Published:
Zeitschrift für Rheumatologie Aims and scope Submit manuscript

Zusammenfassung

Durch translationale Forschung werden Grundlagenforschung und Klinik eng miteinander verknüpft, indem die in einem Bereich gewonnenen Erkenntnisse zu Fortschritten im jeweils anderen Bereich führen können. Insbesondere in der Kinderrheumatologie hat diese Vorgehensweise in den vergangenen Jahren das Verständnis und die Therapie zahlreicher Erkrankungen wesentlich verbessert. Sogenannte DAMPs („damage associated molecular pattern“) wie die S100-Proteine, ihre Struktur, Sekretion und Funktion in inflammatorischem Geschehen stehen dabei im Zentrum unserer Forschungen. Als potenzielle Biomarker für eine spezifischere Diagnostik der (Auto-)Inflammation sind sie von besonderem klinischem Interesse. Überaktivierte Zellen des angeborenen Immunsystems spielen eine entscheidende Rolle bei der Entstehung rheumatischer Erkrankungen. So wurden Mechanismen wie die NETosis (Bildung von „neutrophil extracellular traps“) mit der Pathogenese von entzündlichen Erkrankungen wie systemischem Lupus erythematodes oder rheumatoider Arthritis in Zusammenhang gebracht. Außerdem zeigt sich zunehmend, dass die dabei dominierende sterile und überschießende Entzündungsreaktion über verschiedenste Wege zu einer Aktivierung der adaptiven Immunantwort und somit zur Entwicklung von Autoimmunität beitragen kann. Die Erforschung dieser potenziell DAMP-abhängigen Signalwege zwischen angeborenem und erworbenem Immunsystem kann ein besseres Verständnis kinderrheumatologischer Erkrankungen ermöglichen. Auf diese Weise können mögliche neue Angriffspunkte identifiziert werden, um aktuelle Therapiemöglichkeiten immer weiter zu optimieren.

Abstract

Translational research aims at closely linking basic research and clinical observations so that important mechanistic insights identified in one field should trigger progress in the other. Particularly in the field of pediatric rheumatology this approach has significantly improved the understanding and therapy of several diseases in recent years. One focus of our research in this respect is on the structure, release mechanisms and function of damage associated molecular patterns (DAMP), particularly S100 proteins. Due to their huge potential as inflammation biomarkers for more specific diagnostics these proteins are of particular clinical interest. Overactivated cells of the innate immune system play a crucial role in the development of rheumatic diseases. Innate mechanisms, such as the generation of neutrophil extracellular traps (NETosis) were linked to the pathogenesis of inflammatory diseases, such as systemic lupus erythematosus and rheumatoid arthritis. Furthermore, it became increasingly more evident that various excessive sterile inflammatory mechanisms and reactions significantly contribute to an activation of adaptive immune responses and thus to the development of autoimmunity. Studying such potentially DAMP-dependent pathways at the interface between innate and adaptive immunity can provide a better understanding of autoinflammatory conditions in pediatric rheumatology and to identify novel targets for optimization of therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Achouiti A, Foll D, Vogl T et al (2013) S100A12 and soluble receptor for advanced glycation end products levels during human severe sepsis. Shock 40:188–194

    Article  CAS  PubMed  Google Scholar 

  2. Avau A, Mitera T, Put S et al (2014) Systemic juvenile idiopathic arthritis-like syndrome in mice following stimulation of the immune system with freund’s complete adjuvant: Regulation by interferon-γ. Arthritis Rheum 66:1340–1351

    Article  CAS  Google Scholar 

  3. Bachetti T, Chiesa S, Castagnola P et al (2013) Autophagy contributes to inflammation in patients with TNFR-associated periodic syndrome (TRAPS). Ann Rheum Dis 72:1044–1052

    Article  CAS  PubMed  Google Scholar 

  4. Bae CB, Suh CH, An JM et al (2014) Serum S100A12 may be a useful biomarker of disease activity in adult-onset Still’s disease. J Rheumatol 41:2403–2408

    Article  PubMed  Google Scholar 

  5. Bernasconi NL, Onai N, Lanzavecchia A (2003) A role for Toll-like receptors in acquired immunity: up-regulation of TLR9 by BCR triggering in naive B cells and constitutive expression in memory B cells. Blood 101:4500–4504

    Article  CAS  PubMed  Google Scholar 

  6. Branzk N, Papayannopoulos V (2013) Molecular mechanisms regulating NETosis in infection and disease. Semin Immunopathol 35:513–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Brinkmann V, Reichard U, Goosmann C et al (2004) Neutrophil extracellular traps kill bacteria. Science 303:1532–1535

    Article  CAS  PubMed  Google Scholar 

  8. Brinkmann V, Zychlinsky A (2007) Beneficial suicide: why neutrophils die to make NETs. nature reviews. Microbiology 5:577–582

    CAS  PubMed  Google Scholar 

  9. Brizi MG, Galeazzi M, Lucherini OM et al (2012) Successful treatment of tumor necrosis factor receptor-associated periodic syndrome with canakinumab. Ann Intern Med 156:907–908

    Article  PubMed  Google Scholar 

  10. Bulua AC, Simon A, Maddipati R et al (2011) Mitochondrial reactive oxygen species promote production of proinflammatory cytokines and are elevated in TNFR1-associated periodic syndrome (TRAPS). J Exp Med 208:519–533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Carta S, Tassi S, Delfino L et al (2012) Deficient production of IL-1 receptor antagonist and IL-6 coupled to oxidative stress in cryopyrin-associated periodic syndrome monocytes. Ann Rheum Dis 71:1577–1581

    Article  CAS  PubMed  Google Scholar 

  12. Chellan B, Yan L, Sontag TJ et al (2014) IL-22 is induced by S100/calgranulin and impairs cholesterol efflux in macrophages by downregulating ABCG1. J Lipid Res 55:443–454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cole AM, Kim YH, Tahk S et al (2001) Calcitermin, a novel antimicrobial peptide isolated from human airway secretions. Febs Lett 504:5–10

    Article  CAS  PubMed  Google Scholar 

  14. Foell D, Hernandez-Rodriguez J, Sanchez M et al (2004) Early recruitment of phagocytes contributes to the vascular inflammation of giant cell arteritis. J Pathol 204:311–316

    Article  CAS  PubMed  Google Scholar 

  15. Foell D, Ichida F, Vogl T et al (2003) S100A12 (EN-RAGE) in monitoring Kawasaki disease. Lancet 361:1270–1272

    Article  CAS  PubMed  Google Scholar 

  16. Foell D, Roth J (2004) Proinflammatory S100 proteins in arthritis and autoimmune disease. Arthritis Rheum 50:3762–3771

    Article  CAS  PubMed  Google Scholar 

  17. Foell D, Wittkowski H, Kessel C et al (2013) Proinflammatory S100A12 can activate human monocytes via Toll-like receptor 4. Am J Respir Crit Care Med 187:1324–1334

    Article  CAS  PubMed  Google Scholar 

  18. Foell D, Wulffraat N, Wedderburn LR et al (2010) Methotrexate withdrawal at 6 vs 12 months in juvenile idiopathic arthritis in remission: a randomized clinical trial. JAMA 303:1266–1273

    Article  CAS  PubMed  Google Scholar 

  19. Frosch M, Ahlmann M, Vogl T et al (2009) The myeloid-related proteins 8 and 14 complex, a novel ligand of toll-like receptor 4, and interleukin-1beta form a positive feedback mechanism in systemic-onset juvenile idiopathic arthritis. Arthritis Rheum 60:883–891

    Article  CAS  PubMed  Google Scholar 

  20. Fuchs TA, Abed U, Goosmann C et al (2007) Novel cell death program leads to neutrophil extracellular traps. J Cell Biol 176:231–241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gattorno M, Chicha L, Gregorio A et al (2007) Distinct expression pattern of IFN-alpha and TNF-alpha in juvenile idiopathic arthritis synovial tissue. Rheumatology 46:657–665

    Article  CAS  PubMed  Google Scholar 

  22. Gerss J, Roth J, Holzinger D et al (2012) Phagocyte-specific S100 proteins and high-sensitivity C reactive protein as biomarkers for a risk-adapted treatment to maintain remission in juvenile idiopathic arthritis: a comparative study. Ann Rheum Dis 71:1991–1997

    Article  CAS  PubMed  Google Scholar 

  23. Gottsch JD, Eisinger SW, Liu SH et al (1999) Calgranulin C has filariacidal and filariastatic activity. Infect Immun 67:6631–6636

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Goyette J, Yan WX, Yamen E et al (2009) Pleiotropic roles of S100A12 in coronary atherosclerotic plaque formation and rupture. J Immunol 183:593–603

    Article  CAS  PubMed  Google Scholar 

  25. Hofmann MA, Drury S, Fu C et al (1999) RAGE mediates a novel proinflammatory axis: a central cell surface receptor for S100/calgranulin polypeptides. Cell 97:889–901

    Article  CAS  PubMed  Google Scholar 

  26. Holzinger D, Frosch M, Kastrup A et al (2012) The Toll-like receptor 4 agonist MRP8/14 protein complex is a sensitive indicator for disease activity and predicts relapses in systemic-onset juvenile idiopathic arthritis. Ann Rheum Dis 71:974–980

    Article  CAS  PubMed  Google Scholar 

  27. Holzinger D, Kessel C, Omenetti A et al (2015) From bench to bedside and back again: translational research in autoinflammation. Nat Rev Rheumatol 11:573–585

    Article  CAS  PubMed  Google Scholar 

  28. Iwakura Y, Ishigame H, Saijo S et al (2011) Functional specialization of Interleukin-17 family members. Immunity 34:149–162

    Article  CAS  PubMed  Google Scholar 

  29. Kallinich T, Wittkowski H, Keitzer R et al (2010) Neutrophil-derived S100A12 as novel biomarker of inflammation in familial Mediterranean fever. Ann Rheum Dis 69:677–682

    Article  CAS  PubMed  Google Scholar 

  30. Kessel C, Holzinger D, Foell D (2013) Phagocyte-derived S100 proteins in autoinflammation: putative role in pathogenesis and usefulness as biomarkers. Clin Immunol 147:229–241

    Article  CAS  PubMed  Google Scholar 

  31. Kessel C, Fühner S, Brockmeyer S, Wittkowski H, Föll D (2015) Hexameric S100A12 is required for pro-inflammatory TLR4-signalling. Ann Rheum Dis 74:144–145

    Article  Google Scholar 

  32. Knowlton N, Jiang K, Frank MB et al (2009) The meaning of clinical remission in polyarticular juvenile idiopathic arthritis: gene expression profiling in peripheral blood mononuclear cells identifies distinct disease states. Arthritis Rheum 60:892–900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kolaczkowska E, Kubes P (2013) Neutrophil recruitment and function in health and inflammation. nature reviews. Immunology 13:159–175

    CAS  PubMed  Google Scholar 

  34. Kolly L, Busso N, Von Scheve-Gete A et al (2012) Periodic fever, aphthous stomatitis, pharyngitis, cervical adenitis syndrome is linked to dysregulated monocyte IL-1b production. J Allergy Clin Immunol 131(6):1635–1643

    Article  PubMed  Google Scholar 

  35. Lee D-G, Woo J-W, Kwok S-K et al (2013) MRP8 promotes Th17 differentiation via upregulation of IL-6 production by fibroblast-like synoviocytes in rheumatoid arthritis. Exp Mol Med 45:e20–e20

    Google Scholar 

  36. Li J, Schmidt AM (1997) Characterization and functional analysis of the promoter of RAGE, the receptor for advanced glycation end products. J Biol Chem 272:16498–16506

    Article  CAS  PubMed  Google Scholar 

  37. Loser K, Vogl T, Voskort M et al (2010) The Toll-like receptor 4 ligands Mrp8 and Mrp14 are crucial in the development of autoreactive CD8+ T cells. Nat Med 16:713–717

    Article  CAS  PubMed  Google Scholar 

  38. Martin B, Hirota K, Cua DJ et al (2009) Interleukin-17-producing gammadelta T cells selectively expand in response to pathogen products and environmental signals. Immunity 31:321–330

    Article  CAS  PubMed  Google Scholar 

  39. Menegazzi R, Decleva E, Dri P (2012) Killing by neutrophil extracellular traps: fact or folklore? Blood 119:1214–1216

    Article  CAS  PubMed  Google Scholar 

  40. Moroz OV, Antson AA, Grist SJ et al (2003) Structure of the human S100A12-copper complex: implications for host-parasite defence. Acta Crystallogr D Biol Crystallogr 59:859–867

    Article  CAS  PubMed  Google Scholar 

  41. Moroz OV, Burkitt W, Wittkowski H et al (2009) Both Ca2+ and Zn2+ are essential for S100A12 protein oligomerization and function. BMC Biochem 10:11

    Article  PubMed  PubMed Central  Google Scholar 

  42. Nickel W (2005) Unconventional secretory routes: direct protein export across the plasma membrane of mammalian cells. Traffic 6:607–614

    Article  CAS  PubMed  Google Scholar 

  43. Papayannopoulos V, Zychlinsky A (2009) NETs: a new strategy for using old weapons. Trends Immunol 30:513–521

    Article  CAS  PubMed  Google Scholar 

  44. Piccioli P, Rubartelli A (2013) The secretion of IL-1β and options for release. Semin Immunol 25:425–429

    Article  CAS  PubMed  Google Scholar 

  45. Prudovsky I, Mandinova A, Soldi R et al (2003) The non-classical export routes: FGF1 and IL-1alpha point the way. J Cell Sci 116:4871–4881

    Article  CAS  PubMed  Google Scholar 

  46. Prudovsky I, Tarantini F, Landriscina M et al (2008) Secretion without Golgi. J Cell Biochem 103:1327–1343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Rawlings DJ, Schwartz MA, Jackson SW et al (2012) Integration of B cell responses through Toll-like receptors and antigen receptors. Nat Rev Immunol 12:282–294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Simon A, Bodar EJ, Van Der JC et al (2004) Beneficial response to interleukin 1 receptor antagonist in traps. Am J Med 117:208–210

    Article  CAS  PubMed  Google Scholar 

  49. Tassi S, Carta S, Delfino L et al (2010) Altered redox state of monocytes from cryopyrin-associated periodic syndromes causes accelerated IL-1beta secretion. Proc Natl Acad Sci U S A 107:9789–9794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Tian J, Avalos AM, Mao S-Y et al (2007) Toll-like receptor 9-dependent activation by DNA-containing immune complexes is mediated by HMGB1 and RAGE. Nat Immunol 8:487–496

    Article  CAS  PubMed  Google Scholar 

  51. Tillack K, Breiden P, Martin R et al (2012) T lymphocyte priming by neutrophil extracellular traps links innate and adaptive immune responses. J Immunol 188:3150–3159

    Article  CAS  PubMed  Google Scholar 

  52. Urban CF, Ermert D, Schmid M et al (2009) Neutrophil extracellular traps contain calprotectin, a cytosolic protein complex involved in host defense against Candida albicans. PLOS Pathog 5:e1000639–e1000639

    Article  Google Scholar 

  53. Vogl T, Propper C, Hartmann M et al (1999) S100A12 is expressed exclusively by granulocytes and acts independently from MRP8 and MRP14. J Biol Chem 274:25291–25296

    Article  CAS  PubMed  Google Scholar 

  54. Vogl T, Tenbrock K, Ludwig S et al (2007) Mrp8 and Mrp14 are endogenous activators of Toll-like receptor 4, promoting lethal, endotoxin-induced shock. Nat Med 13:1042–1049

    Article  CAS  PubMed  Google Scholar 

  55. Wang X, Sun R, Wei H et al (2013) High-mobility group box 1 (HMGB1)-toll-like receptor (TLR)4-interleukin (IL)-23-IL-17 A axis in drug-induced damage-associated lethal hepatitis: interaction of γδ T cells with macrophages. Hepatology 57:373–384

    Article  CAS  PubMed  Google Scholar 

  56. Wittkowski H, Frosch M, Wulffraat N et al (2008) S100A12 is a novel molecular marker differentiating systemic-onset juvenile idiopathic arthritis from other causes of fever of unknown origin. Arthritis Rheum 58:3924–3931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wittkowski H, Hirono K, Ichida F et al (2007) Acute Kawasaki disease is associated with reverse regulation of soluble receptor for advance glycation end products and its proinflammatory ligand S100A12. Arthritis Rheum 56:4174–4181

    Article  CAS  PubMed  Google Scholar 

  58. Wittkowski H, Kuemmerle-Deschner JB, Austermann J et al (2011) MRP8 and MRP14, phagocyte-specific danger signals, are sensitive biomarkers of disease activity in cryopyrin-associated periodic syndromes. Ann Rheum Dis 70:2075–2081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Yan WX, Armishaw C, Goyette J et al (2008) Mast cell and monocyte recruitment by S100A12 and its hinge domain. J Biol Chem 283:13035–13043

    Article  CAS  PubMed  Google Scholar 

  60. Yang Z, Yan WX, Cai H et al (2007) S100A12 provokes mast cell activation: a potential amplification pathway in asthma and innate immunity. J Allergy Clin Immunol 119:106–114

    Article  CAS  PubMed  Google Scholar 

  61. Ye F, Foell D, Hirono KI et al (2004) Neutrophil-derived S100A12 is profoundly upregulated in the early stage of acute Kawasaki disease. Am J Cardiol 94:840–844

    Article  CAS  PubMed  Google Scholar 

  62. Yipp BG, Kubes P (2013) NETosis: how vital is it? Blood 122:2784–2794

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Foell.

Ethics declarations

Interessenkonflikt

K. Lippitz, J. Waldkirch, C. Kessel, G. Varga und D. Foell geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Additional information

Redaktion

H.-I. Huppertz, Bremen

K. Lippitz und J. Waldkirch teilen sich die Erstautorenschaft.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lippitz, K., Waldkirch, J., Kessel, C. et al. Translationale Forschung in der pädiatrischen Rheumatologie. Z Rheumatol 75, 276–283 (2016). https://doi.org/10.1007/s00393-015-0040-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00393-015-0040-8

Schlüsselwörter

Keywords

Navigation