Skip to main content

Advertisement

Log in

Kalzium und Vitamin D in der Osteologie

Calcium and vitamin D in osteology

  • CME Zertifizierte Fortbildung
  • Published:
Zeitschrift für Rheumatologie Aims and scope Submit manuscript

Zusammenfassung

Die Kalziumhomöostase ist von zentraler, lebensnotwendiger physiologischer und pathophysiologischer Bedeutung. Dieser Beitrag fokussiert auf die skeletale Relevanz von Kalzium und Vitamin D in der täglichen klinischen Praxis. Vor dem Hintergrund eines in Deutschland bestehenden endemischen Vitamin-D-Mangels und einer zunehmenden Zahl von Patienten mit medikamentenbedingten enteralen Kalziumaufnahmestörungen ist es wichtig zu wissen, dass ein 25-OH-D3-Serumspiegel von > 30 µg/l Voraussetzung für die Sicherstellung einer intakten Skelettmineralisation ist und dass darüber hinaus eine physiologische Magensäureproduktion ebenfalls eine essenzielle Voraussetzung für die ungestörte enterale Kalziumaufnahme ist. Insofern ist ein leitliniengerechter Umgang mit der Vitamin-D- und Kalziumsubstitution eine Voraussetzung für jede osteologische Therapie nicht nur bei rheumatologischen Patienten.

Abstract

Calcium homeostasis is of paramount physiological and pathophysiological importance in health and disease. This article focuses on the skeletal relevance of calcium and vitamin D in daily clinical practice. Against the background of an endemic vitamin D deficiency in Germany and the increasing number of patients with drug-induced (proton pump inhibitor) enteral calcium uptake problems, it is of critical importance to understand that a vitamin D level of > 30 µg/l (> 75 nmol/l) is required for intact skeletal mineralization and that furthermore, a physiological gastric acid production is essential for a normal enteral uptake of calcium from foodstuffs. Therefore, a guideline-conform handling of vitamin D and calcium substitution is required not only for patients with rheumatoid diseases but also for any osteological therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Strohm D (2013) New reference values for calcium. Ann Nutr Metab 63:186–192

    Article  Google Scholar 

  2. Goltzman D (2010) Vitamin D action: lessons learned from genetic mouse models. Ann N Y Acad Sci 1192:145–152

    Article  CAS  PubMed  Google Scholar 

  3. Amling M, Priemel M, Holzmann T et al (1999) Rescue of the skeletal phenotype of vitamin D receptor-ablated mice in the setting of normal mineral ion homeostasis: formal histomorphometric and biomechanical analyses. Endocrinology 140(11):4982–4987

    CAS  PubMed  Google Scholar 

  4. Li YC, Pirro AE, Amling M et al (1997) Targeted ablation of the vitamin D receptor: an animal model of vitamin D-dependent rickets type II with alopecia. Proc Natl Acad Sci U S A 94(18):9831–9835

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Keller J, Schinke T (2013) The role of the gastrointestinal tract in calcium homeostasis and bone remodeling. Osteoporos Int 24(11):2737–2748

    Article  CAS  PubMed  Google Scholar 

  6. Schinke T, Schilling AF, Baranowsky A et al (2009) Impaired gastric acidification negatively affects calcium homeostasis and bone mass. Nat Med 15(6):674–681

    Article  CAS  PubMed  Google Scholar 

  7. Yang YX, Lewis JD, Epstein S, Metz DC (2006) Long-term proton pump inhibitor therapy and risk of hip fracture. JAMA 296(24):2947–2953

    Article  CAS  PubMed  Google Scholar 

  8. Yu EW, Bauer SR, Bain PA, Bauer DC (2011) Proton pump inhibitors and risk of fractures: a meta-analysis of 11 international studies. Am J Med 124(6):519–526

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Krause M, Keller J, Beil B et al (2015) Calcium gluconate supplementation is effective to balance calcium homeostasis in patients with gastrectomy. Osteoporos Int 26(3):987–995

    Article  CAS  PubMed  Google Scholar 

  10. Reid IR, Mason B, Horne A et al (2006) Randomized controlled trial of calcium in healthy older women. Am J Med 119(9):777–785

    Article  CAS  PubMed  Google Scholar 

  11. Chapuy MC, Arlot ME, Delmas PD, Meunier PJ (1994) Effect of calcium and cholecalciferol treatment for three years on hip fractures in elderly women. BMJ 308(6936):1081–1082

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Reid IR, Bolland MJ (2014) Calcium risk-benefit updated – new WHI analyses. Maturitas 77(1):1–3

    Article  PubMed  Google Scholar 

  13. Bolland MJ, Grey A, Avenell A et al (2011) Calcium supplements with or without vitamin D and risk of cardiovascular events: reanalysis of the Women’s Health Initiative limited access dataset and meta-analysis. BMJ 342:d2040

    Article  PubMed Central  PubMed  Google Scholar 

  14. Holick MF, Chen TC (2008) Vitamin D deficiency: a worldwide problem with health consequences. Am J Clin Nutr 87(4):1080S–1086S

    CAS  PubMed  Google Scholar 

  15. Matsuoka LY, Ide L, Wortsman J et al (1987) Sunscreens suppress cutaneous vitamin D3 synthesis. J Clin Endocrinol Metab 64:1165–1168

    Article  CAS  PubMed  Google Scholar 

  16. Holick MF (2003) Vitamin D: a millennium perspective. J Cell Biochem 88:296–307

    Article  CAS  PubMed  Google Scholar 

  17. Webb AR, Kline L, Holick MF (1988) Influence of season and latitude on the cutaneous synthesis of vitaminD3: exposure to winter sunlight in Boston and Edmonton will not promote vitamin D3 synthesis in human skin. J Clin Endocrinol Metab 67:373–378

    Article  CAS  PubMed  Google Scholar 

  18. Holick MF, Matsuoka LY, Wortsman J (1989) Age, vitamin D, and solar ultraviolet. Lancet 2(8671):1104–1105

    Article  CAS  PubMed  Google Scholar 

  19. Vieth R (2011) The pharmacology of vitamin D. In: Feldman D et al (Hrsg) Vitamin D, 3. Aufl. Amsterdam, S 1041–1066

  20. Jones G, Prosser DE (2011) The activating enzymes of vitamin D metabolism (25- and 1-alphahydroxylases). In: Feldman D et al (Hrsg) Vitamin D. 3. Aufl. Amsterdam, S 23–42

  21. Haussler MR, Whitfield GK, Kaneko I et al (2013) Molecular mechanisms of vitamin D action. Calcif Tissue Int 92(2):77–98

    Article  CAS  PubMed  Google Scholar 

  22. Sakaki T et al (2005) Metabolism of vitamin D3 by cytochtromes P450. Front Biosc 10:119–134

    Article  CAS  Google Scholar 

  23. Hossein-nezhad A, Holick MF (2013) Vitamin D for health: a global perspective. Mayo Clin Proc 88(7):720–755

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Hilger J, Friedel A et al (2014) A systematic review of vitamin D status in populations worldwide. Br J Nutr 111(01):23–45

    Article  CAS  PubMed  Google Scholar 

  25. Holick M, Binkley N et al (2011) Evaluation, treatment, and prevention of vitamin D deficiency: an endocrine society clinical practice guideline. J Clin Endocrinol Metab 96:1911–1930

    Article  CAS  PubMed  Google Scholar 

  26. Gonzalez-Gross M, Valtuena J et al (2012) Vitamin D status among adolescents in Europe: the healthy lifestyle in Europe by nutrition in adolescence study. Br J Nutr 107(5):755–764

    Article  CAS  PubMed  Google Scholar 

  27. Kramer J, Diehl A et al (2014) Epidemiological study on the dimension of vitamin D deficiency in North Germany. Dtsch Med Wochenschr 139(10):470–475

    Article  CAS  PubMed  Google Scholar 

  28. Hintzpeter B, Mensink GBM et al (2008) Vitamin D status and health correlates among German adults. Eur J Clin Nutr 62(9):1079–1089

    Article  CAS  PubMed  Google Scholar 

  29. Ringe JD, Kipshoven C (2012) Vitamin D-insufficiency – an estimate of the situation in Germany. Dermatoendocrinol 4(1):77–85

    Article  Google Scholar 

  30. Schilling S (2012) Epidemischer Vitamin-D-Mangel bei Patienten einer geriatrischen Rehabilitationsklinik. Dtsch Ärztebl 109(3):33–38

    Google Scholar 

  31. Hintzpeter B, Scheidt-Nave C et al (2008) Higher prevalence of vitamin D deficiency is associated with immigrant background among children and adolescents in Germany. J Nutr 138(8):1482–1490

    CAS  PubMed  Google Scholar 

  32. Holick MF (2007) Vitamin D deficiency. N Engl J Med 357(3):266–281

    Article  CAS  PubMed  Google Scholar 

  33. Huldschinsky K (1919) Heilung von Rachitis durch Kunstliche Hohensonne. (Ultraviolet irradiation of rachitic children). Dtsch Med Wochenschr 45:712–713

    Article  Google Scholar 

  34. Busse B, Bale HA, Zimmermann EA et al (2013) Vitamin D deficiency induces early signs of aging in human bone, increasing the risk of fracture. Sci Transl Med 5(193):193ra88

    Article  PubMed  Google Scholar 

  35. Kuchuk NO, Pluijm SM, Schoor NM van et al (2009) Relationshipds of serum 25-hydroxyvitamin D to bone mineral densitiy and serum parathyroid hormone and markers of bone turnover in older persons. J Clin Endocrinol Metab 94:1244–1250

    Article  PubMed  Google Scholar 

  36. Bischoff-Ferrari HA, Giovannucci E, Willett WC et al (2006) Estimation of optimal serum concentration of 25-Hydroxyvitamin D for multiple health outcomes. Am J Clin Nutr 84:18–28

    CAS  PubMed  Google Scholar 

  37. Priemel M, Domarus C von, Klatte TO et al (2010) Bone mineralization defects and vitamin D deficiency: histomorphometric analysis of iliac crest bone biopsies and circulating 25-hydroxyvitamin D in 675 patients. J Bone Miner Res 25(2):305–312

    Article  CAS  PubMed  Google Scholar 

  38. Maxmen A (2011) Nutrition advice: the vitamin D-lamma. Nature 475:23–25

    Article  CAS  PubMed  Google Scholar 

  39. Lips P (2001)Vitamin D deficiency and secondary hyperparathyreodism in the elderly: consequences for bone loss and fractures and therapeutic implications. Endocrine Rev 22:477–501

    Article  CAS  Google Scholar 

  40. Ross AC et al (2011) The 2011 report on dietary reference intakes for calcium and vitamin D from the Institute of Medicine: what clinicians need to know. J Clin Endocrinol Metab 96:53–58

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Mithal A, Wahl DA, Bonjour JP et al (2009) Global vitamin D status and determinants of hypovitaminosis D. Osteoporos Int 20:1807–1820

    Article  CAS  PubMed  Google Scholar 

  42. Bischoff-Ferrari HA, Willet WC, Wong JB et al (2009) Prevention of nonvertebral fractures with oral vitamin D and dose dependency: a meta-analysis of randomized controlled trials. Arch Intern Med 169(6):551–561

    Article  CAS  PubMed  Google Scholar 

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt. M. Amling und F. Barvencik geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Amling.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amling, M., Barvencik, F. Kalzium und Vitamin D in der Osteologie. Z Rheumatol 74, 421–434 (2015). https://doi.org/10.1007/s00393-014-1510-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00393-014-1510-0

Schlüsselwörter

Keywords

Navigation