Skip to main content

Advertisement

Log in

Pathogenese und neue Therapieansätze beim systemischen Lupus erythematosus

Pathogenesis and new therapeutic approaches for systemic lupus erythematosus

  • Leitthema
  • Published:
Zeitschrift für Rheumatologie Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Der systemische Lupus erythematosus (SLE) ist eine komplexe Autoimmunerkrankung. Die Erkrankung ist gekennzeichnet durch einen Verlust der immunologischen Toleranz gegenüber nukleären Antigenen, durch abnorme B- und T-Zellantworten und durch Autoantikörperproduktion. Während in den 1950er Jahren die 5-Jahresüberlebensrate lediglich 50 % betrug, wird die 10-Jahresüberlebensrate derzeit auf etwa 70–92 % geschätzt. Dieser Fortschritt liegt sicherlich an einem besseren Verständnis der Pathogenese, das in der Vergangenheit bessere Therapiemöglichkeiten eröffnet hat und neue Perspektiven für zukünftige Therapieansätze erwarten lässt.

Ziel der Arbeit

Das derzeitige Wissen um die Pathogenese sowie der aktuelle Stand neuer Therapieansätze des SLE werden dargestellt.

Ergebnisse und Diskussion

Durch die Verbesserung des Verständnisses der Pathophysiologie haben sich auch die therapeutischen Optionen verbessert, die in Zukunft eine Verbesserung der Prognose der Patienten bei Reduktion der Krankheitslast erwarten lassen. Es befinden sich aktuell mehrere Medikamente im Zulassungsverfahren und vor Kurzem wurde erstmalig seit über 50 Jahren ein neues Medikament für den SLE zugelassen, ein monoklonaler Antikörper gegen BAFF/BLyS.

Abstract

Background

Systemic lupus erythematosus is a complex autoimmune disease that can affect multiple organs and is characterized by a loss of peripheral tolerance against nuclear antigens, pathogenic B and T cell responses and production of autoantibodies. The prevalence is estimated to be 40 per 100,000 in the population in Europe but can be as high as 150 patients per 100,000 among the Afro-Caribbean population. Although the 5-year survival rate in the 1950s was estimated to be only 50 %, the 10-year survival rate is currently estimated to be 70–92 %. This progress is particularly due to a better understanding of the pathogenesis that opened up better therapeutic possibilities in the past and now raises new perspectives for future therapy approaches.

Objective

The current knowledge on the pathogenesis and the current situation of new therapeutic approaches for SLE are presented.

Results and discussion

This progress in the therapeutic options was made possible by a better understanding of the pathophysiology, which leads to the expectation of an improvement in the prognosis of patients due to reduction in the burden of the disease in the future. Several new therapeutic medications are currently awaiting approval and recently for the first time in more than 50 years a new medication for SLE was approved, a monoclonal antibody to the tumor necrosis factor (TNF)-like ligand, B-cell activating factor (BAFF) belonging to the TNF family also named B-cell lymphocyte stimulator (BLyS), BAFF/BLyS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Perl A (2010) Pathogenic mechanisms in systemic lupus erythematosus. Autoimmunity 43:1–6

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Johnson AE, Gordon C, Palmer RG, Bacon PA (1995) The prevalence and incidence of systemic lupus erythematosus in Birmingham, England. Relationship to ethnicity and country of birth. Arthritis Rheum 38:551–558

    Article  CAS  PubMed  Google Scholar 

  3. Tan EM, Cohen AS, Fries JF et al (1982) The 1982 revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum 25:1271–1277

    Article  CAS  PubMed  Google Scholar 

  4. Ozbek S, Sert M, Paydas S, Soy M (2003) Delay in the diagnosis of SLE: the importance of arthritis/arthralgia as the initial symptom. Acta Med Okayama 57:187–190

    PubMed  Google Scholar 

  5. Wandstrat AE, Carr-Johnson F, Branch V et al (2006) Autoantibody profiling to identify individuals at risk for systemic lupus erythematosus. J Autoimmun 27:153–160

    Article  CAS  PubMed  Google Scholar 

  6. Herrmann M, Voll RE, Zoller OM et al (1998) Impaired phagocytosis of apoptotic cell material by monocyte-derived macrophages from patients with systemic lupus erythematosus. Arthritis Rheum 41:1241–1250

    Article  CAS  PubMed  Google Scholar 

  7. Nath SK, Han S, Kim-Howard X et al (2008) A nonsynonymous functional variant in integrin-alpha(M) (encoded by ITGAM) is associated with systemic lupus erythematosus. Nat Genet 40:152–154

    Article  CAS  PubMed  Google Scholar 

  8. Adrianto I, Wen F, Templeton A et al (2011) Association of a functional variant downstream of TNFAIP3 with systemic lupus erythematosus. Nat Genet 43:253–258

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Remmers EF, Plenge RM, Lee AT et al (2007) STAT4 and the risk of rheumatoid arthritis and systemic lupus erythematosus. N Engl J Med 357:977–986

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Lea WW, Lee YH (2011) The association between the PTPN22 C1858T polymorphism and systemic lupus erythematosus: a meta-analysis update. Lupus 20:51–57

    Article  CAS  PubMed  Google Scholar 

  11. Farres MN, Al-Zifzaf DS, Aly AA, Abd Raboh NM (2011) OX40/OX40L in systemic lupus erythematosus: association with disease activity and lupus nephritis. Ann Saudi Med 31:29–34

    Article  PubMed Central  PubMed  Google Scholar 

  12. Sanz I, Lee FE (2010) B cells as therapeutic targets in SLE. Nat Rev Rheumatol 6:326–337

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Edberg JC, Zidovetzki R, Criswell LA et al (2011) Genetic analyses of interferon pathway-related genes reveal multiple new loci associated with systemic lupus erythematosus. Arthritis Rheum 63:2049–2057

    Article  PubMed Central  PubMed  Google Scholar 

  14. Han JW, Zheng HF, Cui Y et al (2009) Genome-wide association study in a Chinese Han population identifies nine new susceptibility loci for systemic lupus erythematosus. Nat Genet 41:1234–1237

    Article  CAS  PubMed  Google Scholar 

  15. Fernando MM, Stevens CR, Sabeti PC et al (2007) Identifi cation of two independent risk factors for lupus within the MHC in United Kingdom families. PLoS Genet 3:e192

    Article  PubMed Central  PubMed  Google Scholar 

  16. Blanco P, Palucka AK, Gill M et al (2001) Induction of dendritic cell differentiation by IFN-alpha in systemic lupus erythematosus. Science 294:1540–1543

    Article  CAS  PubMed  Google Scholar 

  17. Feng D, Stone RC, Eloranta ML et al (2010) Genetic variants and disease-associated factors contribute to enhanced interferon regulatory factor 5 expression in blood cells of patients with systemic lupus erythematosus. Arthritis Rheum 62:562–573

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Arasappan D, Tong W, Mummaneni P et al (2011) Metaanalysis of microarray data using a pathway-based approach identifies a 37-gene expression signature for systemic lupus erythematosus in human peripheral blood mononuclear cells. BMC Med 9:65

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Hedrich CM, Crispin JC, Tsokos GC (2014) Epigenetic regulation of cytokine expression in systemic lupus erythematosus with special focus on T cells. Autoimmunity 47:234–241

    Article  CAS  PubMed  Google Scholar 

  20. Tenbrock K, Juang YT, Leukert N et al (2006) The transcriptional repressor cAMP response element modulator alpha interacts with histone deacetylase 1 to repress promoter activity. J Immunol 177:6159–6164

    Article  CAS  PubMed  Google Scholar 

  21. Koga T, Hedrich CM, Mizui M et al (2014) CaMK4-dependent activation of AKT/mTOR and CREM-α underlies autoimmunity-associated Th17 imbalance. J Clin Invest 124:2234–2245

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Miao CG, Yang YY, He X et al (2013) The emerging role of microRNAs in the pathogenesis of systemic lupus erythematosus. Cell Signal 25:1828–1836

    Article  CAS  PubMed  Google Scholar 

  23. Golding A, Hasni S, Illei G, Shevach EM (2013) The percentage of FoxP3+Helios+ Treg cells correlates positively with disease activity in systemic lupus erythematosus. Arthritis Rheum 65:2898–2906

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Navarra SV, Guzman RM, Gallacher AE et al (2011) Efficacy and safety of belimumab in patients with active systemic lupus erythematosus: a randomised, placebo-controlled, phase 3 trial. Lancet 377:721–731

    Article  CAS  PubMed  Google Scholar 

  25. Zonana-Nacach A, Barr SG, Magder LS, Petri M (2000) Damage in systemic lupus erythematosus and its association with corticosteroids. Arthritis Rheum 43:1801–1808

    Article  CAS  PubMed  Google Scholar 

  26. Diaz-Lagares C, Croca S, Sangle S et al (2012) Efficacy of rituximab in 164 patients with biopsy-proven lupus nephritis: pooled data from European cohorts. Autoimmun Rev 11:357–364

    Article  CAS  PubMed  Google Scholar 

  27. Merrill JT, Wallace DJ, Petri M et al (2011) Safety profile and clinical activity of sifalimumab, a fully human antiinterferon alpha monoclonal antibody, in systemic lupus erythematosus: a phase I, multicentre, double-blind randomised study. Ann Rheum Dis 70:1905–1913

    Article  CAS  PubMed  Google Scholar 

  28. Furie R, Nicholls K, Cheng TT et al (2014) Efficacy and safety of abatacept in lupus nephritis: a twelve-month, randomized, double-blind study. Arthritis Rheumatol 66:379–389

    Article  CAS  PubMed  Google Scholar 

  29. Shirota Y, Yarboro C, Fischer R et al (2013) Impact of anti-interleukin-6 receptor blockade on circulating T and B cell subsets in patients with systemic lupus erythematosus. Ann Rheum Dis 72:118–128

    Article  CAS  PubMed  Google Scholar 

  30. Norby GE, Holme I, Fellström B et al (2009) Effect of fluvastatin on cardiac outcomes in kidney transplant patients with systemic lupus erythematosus: a randomized placebo-controlled study. Arthritis Rheum 60(4):1060–1064

    Article  CAS  PubMed  Google Scholar 

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt. K. Tenbrock hat Vortragsvergütungen von den Firmen Novartis und Abbott erhalten und wird aktuell durch die Novartis Stiftung für Therapeutische Forschung mit einer projektbezogenen Förderung finanziell unterstützt. Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Tenbrock.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tenbrock, K. Pathogenese und neue Therapieansätze beim systemischen Lupus erythematosus. Z. Rheumatol. 73, 890–896 (2014). https://doi.org/10.1007/s00393-014-1399-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00393-014-1399-7

Schlüsselwörter

Keywords

Navigation