Skip to main content

Advertisement

Log in

Epigenetische Modifikationen bei Autoimmunerkrankungen

Epigenetic modifications in autoimmune diseases

  • Neues aus der Forschung
  • Published:
Zeitschrift für Rheumatologie Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Holliday R (2006) Epigenetics: a historical overview. Epigenetics 1(2):76–80

    Article  PubMed  Google Scholar 

  2. Hughes V (2014) Epigenetics: the sins of the father. Nature 507(7490):22–24

    Article  CAS  PubMed  Google Scholar 

  3. Jeffries MA, Dozmorov M, Tang Y et al (2011) Genome-wide DNA methylation patterns in CD4+ T cells from patients with systemic lupus erythematosus. Epigenetics 6(5):593–601

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Lin SY, Hsieh SC, Lin YC et al (2012) A whole genome methylation analysis of systemic lupus erythematosus: hypomethylation of the IL10 and IL1R2 promoters is associated with disease activity. Genes Immun 13(3):214–220

    Article  CAS  PubMed  Google Scholar 

  5. Wang Y, Fan PS, Kahaleh B (2006) Association between enhanced type I collagen expression and epigenetic repression of the FLI1 gene in scleroderma fibroblasts. Arthritis Rheum 54(7):2271–2279

    Article  CAS  PubMed  Google Scholar 

  6. Huber LC, Distler JH, Moritz F et al (2007) Trichostatin A prevents the accumulation of extracellular matrix in a mouse model of bleomycin-induced skin fibrosis. Arthritis Rheum 56(8):2755–2764

    Article  CAS  PubMed  Google Scholar 

  7. Brueckner B, Kuck D, Lyko F (2007) DNA methyltransferase inhibitors for cancer therapy. Cancer J 13(1):17–22

    Article  CAS  PubMed  Google Scholar 

  8. Dees C, Akhmetshina A, Busch N et al (2009) Inhibitors of DNA methyltransferases exert potent anti-fibrotic effects via re-activation of socs-3. Ann Rheum Dis 68(Suppl3):94

    Google Scholar 

  9. Vettori SBM, Iwamoto N, Maurer B et al (2011) Anti-fibrotic effects of microRNA-145 in systemic sclerosis via a multi-step regulation of TGF-Beta/CTGF signaling. Arthritis Rheum 63(Suppl 10):2536

    Google Scholar 

  10. Karouzakis E, Gay RE, Michel BA et al (2009) DNA hypomethylation in rheumatoid arthritis synovial fibroblasts. Arthritis Rheum 60(12):3613–3622

    Article  CAS  PubMed  Google Scholar 

  11. Karouzakis E, Rengel Y, Jungel A et al (2011) DNA methylation regulates the expression of CXCL12 in rheumatoid arthritis synovial fibroblasts. Genes Immun 12(8):643–652

    Article  CAS  PubMed  Google Scholar 

  12. Stanczyk J, Pedrioli DM, Brentano F et al (2008) Altered expression of MicroRNA in synovial fibroblasts and synovial tissue in rheumatoid arthritis. Arthritis Rheum 58(4):1001–1009

    Article  PubMed  Google Scholar 

  13. Kurowska-Stolarska M, Alivernini S, Ballantine LE et al (2011) MicroRNA-155 as a proinflammatory regulator in clinical and experimental arthritis. Proc Natl Acad Sci U S A 108(27):11193–11198

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Bluml S, Bonelli M, Niederreiter B et al (2011) Essential role of microRNA-155 in the pathogenesis of autoimmune arthritis in mice. Arthritis Rheum 63(5):1281–1288

    Article  PubMed  Google Scholar 

  15. Pandis I, Ospelt C, Karagianni N et al (2012) Identification of microRNA-221/222 and microRNA-323-3p association with rheumatoid arthritis via predictions using the human tumour necrosis factor transgenic mouse model. Ann Rheum Dis 71(10):1716–1723

    Article  CAS  PubMed  Google Scholar 

  16. Niederer F, Trenkmann M, Ospelt C et al (2012) Down-regulation of microRNA-34a* in rheumatoid arthritis synovial fibroblasts promotes apoptosis resistance. Arthritis Rheum 64(6):1771–1779

    Article  CAS  PubMed  Google Scholar 

  17. Filkova M, Aradi B, Senolt L et al (2013) Association of circulating miR-223 and miR-16 with disease activity in patients with early rheumatoid arthritis. Ann Rheum Dis (Epub ahead of print)

  18. Zhou Q, Haupt S, Kreuzer JT et al (2014) Decreased expression of miR-146a and miR-155 contributes to an abnormal Treg phenotype in patients with rheumatoid arthritis. Ann Rheum Dis (Epub ahead of print)

  19. Gray SG (2013) Perspectives on epigenetic-based immune intervention for rheumatic diseases. Arthritis Res Ther 15(2):207

    Article  PubMed Central  PubMed  Google Scholar 

  20. Hewings DS, Rooney TP, Jennings LE et al (2012) Progress in the development and application of small molecule inhibitors of bromodomain-acetyl-lysine interactions. J Med Chem 55(22):9393–9413

    Article  CAS  PubMed  Google Scholar 

  21. Neidhart M, Karouzakis E, Jungel A et al (2014) Inhibition of spermidine/spermine n1-acetyltransferase activity: a new therapeutic concept in rheumatoid arthritis. Arthritis Rheumatol 66(7):1723–1733

    Article  CAS  PubMed  Google Scholar 

Download references

Interessenkonflikt

A. Ramming, J.H.W. Distler, G. Schett, S. Gay und A. Jüngel geben an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ramming.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramming, A., Distler, J., Schett, G. et al. Epigenetische Modifikationen bei Autoimmunerkrankungen. Z. Rheumatol. 73, 636–638 (2014). https://doi.org/10.1007/s00393-014-1388-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00393-014-1388-x

Navigation