Skip to main content

Advertisement

Log in

Epigenetik in der Rheumatologie

Epigentics in rheumatic diseases

  • Leitthema
  • Published:
Zeitschrift für Rheumatologie Aims and scope Submit manuscript

Zusammenfassung

Die Erbsubstanz aller Lebewesen besteht aus DNA („desoxyribonucleic acid“). Jede Zelle unseres Körpers enthält die gleiche genetische Ausstattung. In embryonalen Stammzellen ist eine gleichbleibende Anzahl Gene aktiv, und die Zellen sind identisch in ihrem Aufbau und ihrer Funktion. Sobald sich aber unterschiedlich spezialisierte Zellen entwickeln (Differenzierung), unterscheiden sie sich deutlich voneinander, wie z. B. Leber- von den Nervenzellen. Diese Unterschiede gehen nicht auf Änderungen in der Sequenz der DNA zurück, sondern darauf, dass in verschiedenen Zellen unterschiedliche Gene aktiv sind. Das bedeutet, dass ganz gezielt Informationen in der einen Zelle unterdrückt werden müssen, die in anderen wiederum aktiv sind und so verhindert wird, dass z. B. Muskelzellen Haare hervorbringen oder Gehirnzellen Leberenzyme produzieren. Wie kommt es, dass Gene in differenzierten Zellen ein gewebetypisches Set an Genen aktivieren, während sie in anderen Zellen abgeschaltet sind?

Abstract

The human genome comprises approximately 30000 genes needed for the formation and function of approximately 1 Million proteins in the human body. Differentiation leads to the deactivation of genes that are not needed in the specific tissues or cells. To regulate the cell specific gene expression in normal cells epigenetic modifications work in concert with genetic mechanisms. In contrast to genetic mutations, epigenetics encompasses the wide range of heritable changes in gene expression that do not result from alteration in the DNA sequence itself. A dysregulation of epigenetic modifications results in diseases such as cancer or autoimmune diseases. Since these epigenetic modifications of the DNA and the histones are reversible they are good targets for novel therapeutic intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. Alexander RP, Fang G, Rozowsky J et al (2010) Annotating non-coding regions of the genome. Nat Rev Genet 11:559–571

    Article  PubMed  CAS  Google Scholar 

  2. Venter JC, Adams MD, Myers EW et al (2001) The sequence of the human genome. Science 291 (5507):1304–1351

    Article  PubMed  CAS  Google Scholar 

  3. Holliday R (2006) Epigenetics: a historical overview. Epigenetics 1:76–80

    Article  PubMed  Google Scholar 

  4. Dolinoy DC, Huang D, Jirtle RL (2007) Maternal nutrient supplementation counteracts bisphenol A-induced DNA hypomethylation in early development. Proc Natl Acad Sci U S A 104:13056–13061

    Article  PubMed  CAS  Google Scholar 

  5. Hewagama A, Richardson B (2009) The genetics and epigenetics of autoimmune diseases. J Autoimmun 33:3–11

    Article  PubMed  CAS  Google Scholar 

  6. Fassbender HG, Simmling-Annefeld M (1983) The potential aggressiveness of synovial tissue in rheumatoid arthritis. J Pathol 139:399–406

    Article  PubMed  CAS  Google Scholar 

  7. Takami N, Osawa K, Miura Y et al (2006) Hypermethylated promoter region of DR3, the death receptor 3 gene, in rheumatoid arthritis synovial cells. Arthritis Rheum 54:779–787

    Article  PubMed  CAS  Google Scholar 

  8. Nile CJ, Read RC, Akil M et al (2008) Methylation status of a single CpG site in the IL6 promoter is related to IL6 messenger RNA levels and rheumatoid arthritis. Arthritis Rheum 58:2686–2693

    Article  PubMed  Google Scholar 

  9. Karouzakis E, Gay RE, Michel BA et al (2009) DNA hypomethylation in rheumatoid arthritis synovial fibroblasts. Arthritis Rheum 60:3613–3622

    Article  PubMed  CAS  Google Scholar 

  10. Fabbri M, Calin GA (2010) Epigenetics and miRNAs in human cancer. Adv Genet 70:87–99

    Article  PubMed  CAS  Google Scholar 

  11. Stanczyk J, Ospelt C, Karouzakis E et al (2010) Altered expression of miR-203 in rheumatoid arthritis synovial fibroblasts and its role in fibroblast activation. Arthritis Rheum [Epub ahead of print Oct 27]

  12. Mani S, Herceg Z (2010) DNA demethylating agents and epigenetic therapy of cancer. Adv Genet 70:327–340

    Article  PubMed  CAS  Google Scholar 

  13. Barnes PJ (2009) Targeting the epigenome in the treatment of asthma and chronic obstructive pulmonary disease. Proc Am Thorac Soc 6:693–696

    Article  PubMed  CAS  Google Scholar 

  14. Villagra A, Cheng F, Wang HW et al (2009) The histone deacetylase HDAC11 regulates the expression of interleukin 10 and immune tolerance. Nat Immunol 10:92–100

    Article  PubMed  CAS  Google Scholar 

  15. Bertrand P (2010) Inside HDAC with HDAC inhibitors. Eur J Med Chem 45:2095–2116

    Article  PubMed  CAS  Google Scholar 

  16. Balasubramanian S, Verner E, Buggy JJ (2009) Isoform-specific histone deacetylase inhibitors: the next step? Cancer Lett 280:211–221

    Article  PubMed  CAS  Google Scholar 

  17. Willyard C (2010) The saving switch. Nat Med 16:18–21

    Article  PubMed  CAS  Google Scholar 

  18. Chung YL, Lee MY, Wang AJ et al (2003) A therapeutic strategy uses histone deacetylase inhibitors to modulate the expression of genes involved in the pathogenesis of rheumatoid arthritis. Mol Ther 8:707–717

    Article  PubMed  CAS  Google Scholar 

  19. Huber LC, Brock M, Hemmatazad H et al (2007) Histone deacetylase/acetylase activity in total synovial tissue derived from rheumatoid arthritis and osteoarthritis patients. Arthritis Rheum 56:1087–1093

    Article  PubMed  CAS  Google Scholar 

  20. Chen J, Xu X (2010) Diet, epigenetic, and cancer prevention. Adv Genet 71:237–255

    Article  PubMed  CAS  Google Scholar 

  21. Hong S, Derfoul A, Pereira-Mouries L et al (2009) A novel domain in histone deacetylase 1 and 2 mediates repression of cartilage-specific genes in human chondrocytes. Faseb J 23:3539–3552

    Article  PubMed  CAS  Google Scholar 

  22. Higashiyama R, Miyaki S, Yamashita S et al (2010) Correlation between MMP-13 and HDAC7 expression in human knee osteoarthritis. Mod Rheumatol 20:11–17

    Article  PubMed  CAS  Google Scholar 

  23. Huber LC, Distler JH, Moritz F et al (2007) Trichostatin A prevents the accumulation of extracellular matrix in a mouse model of bleomycin-induced skin fibrosis. Arthritis Rheum 56:2755–2764

    Article  PubMed  CAS  Google Scholar 

  24. Niederer F, Brentano F, Ospelt C et al (2009) Expression of sirtuins in rheumatoid arthritis synovial fibroblasts. Arthritis Rheum 60:S52

    Google Scholar 

  25. Dvir-Ginzberg M, Gagarina V, Lee EJ et al (2008) Regulation of cartilage-specific gene expression in human chondrocytes by SirT1 and nicotinamide phosphoribosyltransferase. J Biol Chem 283:36300–36310

    Article  PubMed  CAS  Google Scholar 

  26. Litt M, Qiu Y, Huang S (2009) Histone arginine methylations: their roles in chromatin dynamics and transcriptional regulation. Biosci Rep 29:131–141

    Article  PubMed  CAS  Google Scholar 

  27. Crea F, Hurt EM, Farrar WL (2010) Clinical significance of polycomb gene expression in brain tumors. Mol Cancer 9:265

    Article  PubMed  Google Scholar 

  28. Ciavatta DJ, Yang J, Preston GA et al (2010) Epigenetic basis for aberrant upregulation of autoantigen genes in humans with ANCA vasculitis. J Clin Invest 120:3209–3219

    Article  PubMed  CAS  Google Scholar 

  29. Trenkmann M, Brock M, Gay R et al (2008) The polycomb group protein EZH2 is up regulated in rheumatoid arthritis synovial fibroblasts and induced by TNF. Arthritis Rheum 58:S189

    Google Scholar 

  30. Shan Y, Zheng J, Lambrecht RW et al (2007) Reciprocal effects of micro-RNA-122 on expression of heme oxygenase-1 and hepatitis C virus genes in human hepatocytes. Gastroenterology 133:1166–1174

    Article  PubMed  CAS  Google Scholar 

Download references

Interessenkonflikt

Die korrespondierende Autorin gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Jüngel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jüngel, A., Gay, S. Epigenetik in der Rheumatologie. Z. Rheumatol. 70, 205–212 (2011). https://doi.org/10.1007/s00393-010-0689-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00393-010-0689-y

Schlüsselwörter

Keywords

Navigation