Skip to main content
Log in

Kristallinduzierte Inflammasomaktivierung: Gicht und Pseudogicht

Crystal-induced activation of the inflammasome: gout and pseudogout

  • Leitthema
  • Published:
Zeitschrift für Rheumatologie Aims and scope Submit manuscript

Zusammenfassung

Auf Kristalle in Geweben reagiert das angeborene Immunsystem wie auf pathogene Keime. Über die Aktivierung eines Inflammasoms wird Interleukin-1 (IL-1) freigesetzt, das u. a. Cyclooxgenase, TNF und IL-8 hochreguliert und eine akute, granulozytäre Gelenkentzündung auslöst. Daher dürften neben NSAR, Steroiden und Colchicin auch IL-1-Blocker wirken. Größere klinische Studien wurden bereits initiiert. Bei Patienten mit Kontraindikationen gegen NSAR oder unzureichender Wirkung könnten diese Substanzen eine wertvolle Alternative darstellen. Ist der Gichtanfall wieder abgeklungen, ist aber weiter die Kontrolle des Harnsäurehaushalts entscheidend. Dass zumindest einige der Urattransporter, deren Störung zu Hyperurikämie führt, identifiziert wurden, könnte in Zukunft ebenfalls zu gezielten Therapieansätzen führen. Vorerst bleiben aber Diät und Hemmung der Harnsäuresynthese die Hauptangriffspunkte. Der neue Xanthinoxidasehemmer Febuxostat stellt hier eine neue Therapieoption bei Niereninsuffizienz oder Unverträglichkeit von Allopurinol dar.

Abstract

Crystals in tissues lead the innate immune system to the same kind of acute response seen with pathogens. Via activation of the inflammasome, interleukin-1 (IL-1) is released, which upregulates mediators such as cyclooxygenase, tumor necrosis factor, and IL-8 and induces an acute granulocytic inflammation. Therefore, in addition to nonsteroidal anti-inflammatory drugs (NSAIDs), steroids, and colchicine, IL-1 blockers appear to be effective. Large clinical trials have already been initiated. Such an approach could constitute a valuable alternative for patients with contraindications or insufficient response to NSAIDs. After the attack has subsided, control of uric acid metabolism is central. At least several of the responsible urate transporters have been unraveled, which could lead to more focused therapy in the future. At present, diet and blockade of uric acid synthesis remain the main pillars of therapy. The new xanthine oxidase inhibitor febuxostat constitutes a novel option for patients with renal insufficiency or intolerance to allopurinol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Martinon F, Petrilli V, Mayor A et al (2006) Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440:237–241

    Article  CAS  PubMed  Google Scholar 

  2. Ye Z, Ting JP (2008) NLR, the nucleotide-binding domain leucine-rich repeat containing gene family. Curr Opin Immunol 20:3–9

    CAS  PubMed  Google Scholar 

  3. Franchi L, McDonald C, Kanneganti TD et al (2006) Nucleotide-binding oligomerization domain-like receptors: intracellular pattern recognition molecules for pathogen detection and host defense. J Immunol 177:3507–3513

    CAS  PubMed  Google Scholar 

  4. Arend WP, Palmer G, Gabay C (2008) IL-1, IL-18 and IL-33 families of cytokines. Immunol Rev 223:20–38

    Article  CAS  PubMed  Google Scholar 

  5. Martinon F, Tschopp J (2007) Inflammatory caspases and inflammasomes: master switches of inflammation. Cell Death Differ 14:10–22

    Article  CAS  PubMed  Google Scholar 

  6. Shi Y, Evans JE, Rock KL (2003) Molecular identification of a danger signal that alerts the immune system to dying cells. Nature 425:516–521

    Article  CAS  PubMed  Google Scholar 

  7. Cassel SL, Eisenbarth SC, Iyer SS et al (2008) The Nalp3 inflammasome is essential for the development of silicosis. Proc Natl Acad Sci USA 105:9035–9040

    Article  CAS  PubMed  Google Scholar 

  8. Eisenbarth SC, Colegio OR, O’Connor W et al (2008) Crucial role for the Nalp3 inflammasome in the immunostimulatory properties of aluminium adjuvants. Nature 453:1122–1126

    Article  CAS  PubMed  Google Scholar 

  9. Halle A, Hornung V, Petzold GC et al (2008) The NALP3 inflammasome is involved in the innate immune response to amyloid-beta. Nat Immunol 9:857–865

    Article  CAS  PubMed  Google Scholar 

  10. Burt HM, Dutt YC (1986) Growth of monosodium urate monohydrate crystals: effect of cartilage and synovial fluid components on in vitro growth rates. Ann Rheum Dis 45:858–864

    Article  CAS  PubMed  Google Scholar 

  11. McGill NW, Swan A, Dieppe PA (1991) Survival of calcium pyrophosphate crystals in stored synovial fluids. Ann Rheum Dis 50:939–941

    Article  CAS  PubMed  Google Scholar 

  12. Martin WJ, Walton M, Harper J (2009) Resident macrophages initiating and driving inflammation in a monosodium urate monohydrate crystal-induced murine peritoneal model of acute gout. Arthritis Rheum 60:281–289

    Article  PubMed  Google Scholar 

  13. Schiltz C, Liote F, Prudhommeaux F et al (2002) Monosodium urate monohydrate crystal-induced inflammation in vivo: quantitative histomorphometric analysis of cellular events. Arthritis Rheum 46:1643–1650

    Article  CAS  PubMed  Google Scholar 

  14. Schlesinger N, Norquist JM, Watson DJ (2009) Serum urate during acute gout. J Rheumatol 36:1287–1289

    Article  CAS  PubMed  Google Scholar 

  15. Zhang W, Doherty M, Pascual E et al (2006) EULAR evidence based recommendations for gout. Part I: Diagnosis. Report of a task force of the Standing Committee for International Clinical Studies Including Therapeutics (ESCISIT). Ann Rheum Dis 65:1301–1311

    Article  CAS  PubMed  Google Scholar 

  16. Tausche AK, Richter K, Grassler A et al (2004) Severe gouty arthritis refractory to anti-inflammatory drugs: treatment with anti-tumour necrosis factor alpha as a new therapeutic option. Ann Rheum Dis 63:1351–1352

    Article  CAS  PubMed  Google Scholar 

  17. Fiehn C, Zeier M (2006) Successful treatment of chronic tophaceous gout with infliximab (Remicade). Rheumatol Int 26:274–276

    Article  PubMed  Google Scholar 

  18. Torres R, Macdonald L, Croll SD et al (2009) Hyperalgesia, synovitis and multiple biomarkers of inflammation are suppressed by IL-1 inhibition in a novel animal model of gouty arthritis. Ann Rheum Dis 68: 1517-1519

    Article  Google Scholar 

  19. So A, De Smedt T, Revaz S, Tschopp J (2007) A pilot study of IL-1 inhibition by anakinra in acute gout. Arthritis Res Ther 9:28

    Article  Google Scholar 

  20. Ceballos-Picot I, Mockel L, Potier MC et al (2009) Hypoxanthine-guanine phosphoribosyl transferase regulates early developmental programming of dopamine neurons: implications for Lesch-Nyhan disease pathogenesis. Hum Mol Genet 18:2317–2327

    Article  CAS  PubMed  Google Scholar 

  21. Aringer M, Graessler J (2008) Understanding deficient elimination of uric acid. Lancet 372:1929–1930

    Article  PubMed  Google Scholar 

  22. Enomoto A, Kimura H, Chairoungdua A et al (2002) Molecular identification of a renal urate anion exchanger that regulates blood urate levels. Nature 417:447–452

    CAS  PubMed  Google Scholar 

  23. Graessler J, Graessler A, Unger S et al (2006) Association of the human urate transporter 1 with reduced renal uric acid excretion and hyperuricemia in a German Caucasian population. Arthritis Rheum 54:292–300

    Article  CAS  PubMed  Google Scholar 

  24. Doring A, Gieger C, Mehta D et al (2008) SLC2A9 influences uric acid concentrations with pronounced sex-specific effects. Nat Genet 40:430–436

    Article  PubMed  Google Scholar 

  25. Vitart V, Rudan I, Hayward C et al (2008) SLC2A9 is a newly identified urate transporter influencing serum urate concentration, urate excretion and gout. Nat Genet 40:437–442

    Article  CAS  PubMed  Google Scholar 

  26. Wallace C, Newhouse SJ, Braund P et al (2008) Genome-wide association study identifies genes for biomarkers of cardiovascular disease: serum urate and dyslipidemia. Am J Hum Genet 82:139–149

    Article  CAS  PubMed  Google Scholar 

  27. Dehghan A, Kottgen A, Yang Q et al (2008) Association of three genetic loci with uric acid concentration and risk of gout: a genome-wide association study. Lancet 372:1953–1961

    Article  CAS  PubMed  Google Scholar 

  28. Moriwaki Y, Yamamoto T, Takahashi S et al (2001) Spot urine uric acid to creatinine ratio used in the estimation of uric acid excretion in primary gout. J Rheumatol 28:1306–1310

    CAS  PubMed  Google Scholar 

  29. Schumacher HR Jr, Becker MA, Wortmann RL et al (2008) Effects of febuxostat versus allopurinol and placebo in reducing serum urate in subjects with hyperuricemia and gout: a 28-week, phase III, randomized, double-blind, parallel-group trial. Arthritis Rheum 59:1540–1548

    Article  PubMed  Google Scholar 

  30. Becker MA, Schumacher HR, MacDonald PA et al (2009) Clinical efficacy and safety of successful longterm urate lowering with febuxostat or allopurinol in subjects with gout. J Rheumatol 36:1273–1282

    Article  CAS  PubMed  Google Scholar 

  31. Harrold LR, Andrade SE, Briesacher BA et al (2009) Adherence with urate-lowering therapies for the treatment of gout. Arthritis Res Ther 11:46

    Article  Google Scholar 

  32. Underwood M (2006) Diagnosis and management of gout. BMJ 332:1315–1319

    Article  PubMed  Google Scholar 

  33. Annemans L, Spaepen E, Gaskin M et al (2008) Gout in the UK and Germany: prevalence, comorbidities and management in general practice 2000–2005. Ann Rheum Dis 67:960–966

    Article  CAS  PubMed  Google Scholar 

  34. Rathmann W, Funkhouser E, Dyer AR, Roseman JM (1998) Relations of hyperuricemia with the various components of the insulin resistance syndrome in young black and white adults: the CARDIA study. Coronary Artery Risk Development in Young Adults. Ann Epidemiol 8:250–261

    Article  CAS  PubMed  Google Scholar 

  35. Choi HK, Atkinson K, Karlson EW, Curhan G (2005) Obesity, weight change, hypertension, diuretic use and risk of gout in men: the health professionals follow-up study. Arch Intern Med 165:742–748

    Article  PubMed  Google Scholar 

  36. Choi HK, Ford ES, Li C, Curhan G (2007) Prevalence of the metabolic syndrome in patients with gout: the Third National Health and Nutrition Examination Survey. Arthritis Rheum 57:109–115

    Article  PubMed  Google Scholar 

  37. Chobanian AV, Bakris GL, Black HR et al (2003) The seventh report of the joint national committee on prevention, detection, evaluation, and treatment of high blood pressure: the jnc 7 report. JAMA 289:2560–2572

    Article  CAS  PubMed  Google Scholar 

  38. Kim SY, Guevara JP, Kim KM et al (2009) Hyperuricemia and risk of stroke: A systematic review and meta-analysis. Arthritis Rheum 61:885–892

    Article  PubMed  Google Scholar 

  39. Muir SW, Harrow C, Dawson J et al (2008) Allopurinol use yields potentially beneficial effects on inflammatory indices in those with recent ischemic stroke: a randomized, double-blind, placebo-controlled trial. Stroke 39:3303–3307

    Article  CAS  PubMed  Google Scholar 

  40. Williams CJ, Zhang Y, Timms A et al (2002) Autosomal dominant familial calcium pyrophosphate dihydrate deposition disease is caused by mutation in the transmembrane protein ANKH. Am J Hum Genet 71:985–991

    Article  PubMed  Google Scholar 

  41. Maldonado I, Reginato AM, Reginato AJ (2001) Familial calcium crystal diseases: what have we learned? Curr Opin Rheumatol 13:225–233

    Article  CAS  PubMed  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Winzer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Winzer, M., Tausche, AK. & Aringer, M. Kristallinduzierte Inflammasomaktivierung: Gicht und Pseudogicht. Z. Rheumatol. 68, 733–739 (2009). https://doi.org/10.1007/s00393-009-0489-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00393-009-0489-4

Schlüsselwörter

Keywords

Navigation