Skip to main content

Advertisement

Log in

Molekulargenetische Diagnostik erblicher Fiebersyndrome

Familiäres Mittelmeerfieber (FMF), Hyperimmunglobulin-D-Syndrom (HIDS), TNF-rezeptorassoziiertes periodisches Syndrom (TRAPS), Cryopyrin-assoziiertes periodisches Syndrom (CAPS: FCAS, MWS, NOMID/CINCA)

Molecular diagnostics of hereditary fever syndromes

Familial Mediterranean fever (FMF), hyperimmunoglobulin D syndrome (HIDS), tumor necrosis factor receptor-associated periodic syndrome (TRAPS), cryopyrin-associated periodic syndrome (CAPS: FCAS, MWS, NOMID/CINCA)

  • Leitthema
  • Published:
Zeitschrift für Rheumatologie Aims and scope Submit manuscript

Zusammenfassung

Chronisch rezidivierende Episoden mit Fieber und Entzündungszeichen können auch erblich bedingt sein. Die Entdeckung der verursachenden Genvarianten ermöglicht heute in der überwiegenden Mehrzahl der Fälle die molekulargenetische Sicherung der Diagnose und bietet damit neben Ansätzen für eine spezifische medikamentöse Behandlung auch Verbesserungen bezüglich der Patientencompliance und der genetischen Beratung. Für die gezielte Gendiagnostik sind neben dem Beschwerdebild eine genaue Anamnese einschließlich Familienanamnese sowie die ethnische Abstammung wegweisend. Die Gendiagnostik selbst kann durch ein iteratives Vorgehen, welches die Wahrscheinlichkeiten des Auftretens von Mutationen in verschiedenen Genen und Genabschnitten berücksichtigt, zielstrebiger und damit auch ökonomischer durchgeführt werden.

Abstract

Periodic episodes of fever and inflammation can have a genetic origin. Nowadays, the identification of the causative genetic variants in the majority of cases allows molecular genetic confirmation of the clinical diagnosis, which enables approaches with specific drug treatment and improves patient compliance as well as genetic counseling. Besides a detailed clinical examination a medical history including family history and an assessment of the ethnic origin are required. In order to make genetic testing straightforward and cost effective an iterative procedure should be followed which should include, in addition to clinical data, the frequencies of causative mutations in the various gene segments involved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. McDermott MF, Aksentijevich I, Galon J et al (1999) Germline mutations in the extracellular domains of the 55 kDa TNF receptor, TNFR1, define a family of dominantly inherited autoinflammatory syndromes. Cell 97:133–144

    Article  CAS  PubMed  Google Scholar 

  2. Pras E, Aksentijevich I, Gruberg L et al (1992) Mapping of a gene causing familial Mediterranean fever to the short arm of chromosome 16. N Engl J Med 326:1509–1513

    Article  CAS  PubMed  Google Scholar 

  3. The French FMF Consortium (1997) A candidate gene for familial Mediterranean fever. Nat Genet 17:25–31

    Article  Google Scholar 

  4. The International FMF Consortium (1997) Ancient missense mutations in a new member of the RoRet gene family are likely to cause familial Mediterranean fever. Cell 90:797–807

    Article  Google Scholar 

  5. Milhavet F, Cuisset L, Hoffman HM et al (2008) The infevers autoinflammatory mutation online registry: update with new genes and functions. Hum Mutat 29:803–808

    Article  PubMed  Google Scholar 

  6. Livneh A, Langevitz P, Shinar Y et al (1999) MEFV mutation analysis in patients suffering from amyloidosis of familial Mediterranean fever. Amyloid 6:1–6

    CAS  PubMed  Google Scholar 

  7. Ben-Chetrit E, Lerer I, Malamud E et al (2000) The E148Q mutation in the MEFV gene: is it a disease-causing mutation or a sequence variant? Hum Mutat 15:385–386

    Article  CAS  PubMed  Google Scholar 

  8. Tunca M, Akar S, Hawkins PN et al (2002) The significance of paired MEFV mutations in individuals without symptoms of familial Mediterranean fever. Eur J Hum Genet 10:786–789

    Article  CAS  PubMed  Google Scholar 

  9. Livneh A, Langevitz P, Zemer D et al (1997) Criteria for the diagnosis of familial Mediterranean fever. Arthritis Rheum (1)40:879–885

    Google Scholar 

  10. Deltas CC, Mean R, Rossou E et al (2002) Familial Mediterranean fever (FMF) mutations occur frequently in the Greek-Cypriot population of Cyprus. Genet Test 6:15–21

    Article  CAS  PubMed  Google Scholar 

  11. Drenth JP, Cuisset L, Grateau G (1999) Mutations in the gene encoding mevalonate kinase cause hyper-IgD and periodic fever syndrome. Nat Genet 22:178–181

    Article  CAS  PubMed  Google Scholar 

  12. Houten SM, Kuis W, Duran M (1999) Mutations in MVK, encoding mevalonate kinase, cause hyperimmunoglobulinaemia D and periodic fever syndrome. Nat Genet 22:175–177

    Article  CAS  PubMed  Google Scholar 

  13. Cuisset L, Drenth JP, Simon A (2001) International Hyper-IgD Study Group. Molecular analysis of MVK mutations and enzymatic activity in hyper-IgD and periodic fever syndrome. Eur J Hum Genet 9:260–266

    Article  CAS  PubMed  Google Scholar 

  14. Hoffmann G, Gibson KM, Brandt IK et al (1986) Mevalonic aciduria–an inborn error of cholesterol and nonsterol isoprene biosynthesis. N Engl J Med 314:1610–1614

    CAS  PubMed  Google Scholar 

  15. Houten SM, van Woerden CS, Wijburg FA et al (2003) Carrier frequency of the V377I (1129G>A) MVK mutation, associated with Hyper-IgD and periodic fever syndrome, in the Netherlands. Eur J Hum Genet 11:196–200

    Article  CAS  PubMed  Google Scholar 

  16. Drenth JP, van der Meer JW (2001) Hereditary periodic fever. N Engl J Med 345:1748–1757

    Article  CAS  PubMed  Google Scholar 

  17. McDermott MF, Ogunkolade BW, McDermott EM et al (1998) Linkage of familial Hibernian fever to chromosome 12p13. Am J Hum Genet 62:1446–1451

    Article  CAS  PubMed  Google Scholar 

  18. Mulley J, Saar K, Hewitt G et al (1998) Gene localization for an autosomal dominant familial periodic fever to 12p13. Am J Hum Genet 62:884–889

    Article  CAS  PubMed  Google Scholar 

  19. McDermott MF, Aksentijevich I, Galon J et al (1999) Germline mutations in the extracellular domains of the 55 kDa TNF receptor, TNFR1, define a family of dominantly inherited autoinflammatory syndromes. Cell 97:133–144

    Article  CAS  PubMed  Google Scholar 

  20. Aganna E, Hammond L, Hawkins PN et al (2003) Heterogeneity among patients with tumor necrosis factor receptor-associated periodic syndrome phenotypes. Arthritis Rheum 48:2632–2644

    Article  CAS  PubMed  Google Scholar 

  21. Jung M et al (1996) A locus for familial cold urticaria maps to distal chromosome1q: familial cold urticaria and Muckle–Wells syndrome are probably allelic. Am J Hum Genet A 59:223

    Google Scholar 

  22. Hoffman HM, Wright FA, Broide DH et al (2000) Identification of a locus on chromosome 1q44 for familial cold urticaria. Am J Hum Genet 66:1693–1698

    Article  CAS  PubMed  Google Scholar 

  23. Hoffman HM, Mueller JL, Broide DH et al (2001) Mutation of a new gene encoding a putative pyrin-like protein causes familial cold autoinflammatory syndrome and Muckle-Wells syndrome. Nat Genet 29:301–305

    Article  CAS  PubMed  Google Scholar 

  24. Aksentijevich I, Nowak M, Mallah M et al (2002) De novo CIAS1 mutations, cytokine activation, and evidence for genetic heterogeneity in patients with neonatal-onset multisystem inflammatory disease (NOMID): a new member of the expanding family of pyrin-associated autoinflammatory diseases. Arthritis Rheum 46:3340–3348

    Article  CAS  PubMed  Google Scholar 

  25. Drenth JP, van der Meer JW (2006) The inflammasome–a linebacker of innate defense. N Engl J Med 355:730–732

    Article  CAS  PubMed  Google Scholar 

  26. Gattorno M, Sormani MP, D’Osualdo A et al (2008) A diagnostic score for molecular analysis of hereditary autoinflammatory syndromes with periodic fever in children. Arthritis Rheum 58:1823–1832

    Article  CAS  PubMed  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Timmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Timmann, C., Horstmann, R. Molekulargenetische Diagnostik erblicher Fiebersyndrome. Z. Rheumatol. 68, 720–725 (2009). https://doi.org/10.1007/s00393-009-0486-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00393-009-0486-7

Schlüsselwörter

Keywords

Navigation