Skip to main content

Advertisement

Log in

Vorstellungen zur Pathogenese der juvenilen idiopathischen Arthritis

Concepts on the pathogenesis of juvenile idiopathic arthritis

  • Leitthema
  • Published:
Zeitschrift für Rheumatologie Aims and scope Submit manuscript

Zusammenfassung

Zur Entstehung der juvenilen idiopathischen Arthritis (JIA) gibt es verschiedene Erklärungsansätze.

Es gibt es Hinweise, dass Veränderungen in Genen des Immunsystems zur JIA prädisponieren können und die Regulation des Immunsystems bei der Pathogenese von entscheidender Bedeutung ist. Vermutlich kommt dem adaptiven, erworbenen Immunsystem die zentrale Rolle zu. So ist bei der JIA eine auffällige Population von hoch aktivierten T-Zellen in der Synovia zu finden. Auch B-Zellen sind beteiligt, worauf die positiven ANA-Titer bei der JIA hinweisen. Regulatorische T-Zellen (Tregs) versuchen, die Expansion autoreaktiver T-Zellen zu unterbinden und haben eine protektive Funktion.

Aber auch das natürliche oder angeborene Immunsystem spielt eine Rolle. So könnte als Ursache der JIA mit systemischem Beginn eine Störung des Inflammasoms zugrunde liegen. Beim Zusammenspiel zwischen angeborenem und adaptivem Immunsystem zeigt sich, dass eine eindeutige räumliche und zeitliche Trennung zwischen natürlichem und adaptivem Immunsystem zunehmend schwieriger wird. Infektions- und virengetriggerte Immunreaktionen könnten ebenfalls eine Ursache der JIA sein. Eine nachgewiesen entscheidende Bedeutung für die Pathogenese haben proinflammatorische Zytokine, wie sie z. B. auch unter Stress ausgeschüttet werden.

Die neuen Techniken der Genomik und Proteomik können ein individualisiertes Profil für jeden Patienten erstellen und ermöglichen eine immer feinere Auftrennung von Subtypen und werden damit die therapeutischen Möglichkeiten verbessern.

Abstract

There are various explanations for the development of juvenile idiopathic arthritis (JIA).

Gene changes in the immune system can predispose to JIA and regulation of the immune system is crucial in the pathogenesis. The adaptive, acquired immune system probably plays a central role. Thus, in the case of JIA a conspicuous population of highly activated T-cells can be found in the synovia. B-cells are also involved, as indicated by positive ANA titers in JIA patients. Regulatory T-cells (Tregs) attempt to prevent the expansion of autoreactive T-cells.

However, the natural or the innate immune system also plays a role. Thus a disorder of the inflammasome could underlie the cause of JIA with systemic onset. The interaction between congenital and adaptive immune system shows that a distinct spatial and temporal separation between the two immune systems is becoming increasingly difficult. An infection- and virus-related immune reaction could also be the cause of JIA. Proinflammatory cytokines are of proven significance in pathogenesis in terms of how they are released under stress, for example.

New genomic and proteomic techniques are able to produce individualized profiles for each patient and allow for increasingly fine separation between subtypes, thus improving therapeutic possibilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5

Abbreviations

AK:

Antikörper

ALPS:

Autoimmunes lymphoproliferatives Syndrom

ANA:

Antinukleäre Antikörper

AP-I:

„Activating protein-1“

ASC:

„Apoptosis-associated Speck-like protein containing a CARD“

CARD:

„Caspase recruitment domain“

CCR:

Chemokinrezeptor

CD:

„Cluster of differentiation“

CIAS:

„Cold induced autoinflammatory syndrome“

CINCA:

„Chronic infantile neurological cutaneous articular syndrome“

CMV:

Zytomegalievirus

CXCR:

CXC-Chemokinrezeptor

DAMPs:

„Damage-associated molecular patterns“

DNA:

Desoxyribonukleinsäure

EBV:

Epstein-Barr-Virus

FOXP3:

„Forkhead box proteins“

HLA:

Humanes Leukozytenantigen

HMGB:

„High mobility group box 1 protein“

HPF:

Hereditäre periodische Fiebersyndrome

HSP:

„Heat shock protein“

IFN:

Interferon

IkB:

IκB-Kinase

IKK:

IkappaB-Kinase-Komplex

IL:

Interleukin

ILAR:

„International League of Associations for Rheumatology“

IP:

„Interferon-inducible protein“

IPAF:

„ICE-Protease aktivierender Faktor“

IRF-1:

„Interferon regulatory factor 1“

JIA:

Juvenile idiopathische Arthritis

LPS:

Lipopolysaccharide

MIF:

„Macrophage migration inhibiting factor“

MRP:

„Myeloid related proteins“

MTX:

Methotrexat

NAIP:

Neuronaler Apoptose-inhibierender Faktor

NALP:

„NACHT-, LRR-, and PYD-containing“

NEMO:

„NF-kB essential modulator“

NF:

„Nuclear factor“

NFAT:

„Nuclear factor of activated T-cells“

NFκB:

„Nuclear factor kappaB“

NK-Zellen:

Natürliche Killerzellen

NLR:

„NACHT and leucine-rich repeat“

NOD:

„Nucleotide oligomerization domain“

NOMID:

„Neonatal syndrome of multisystem inflammation“

PAMPs:

„Pathogen associated molecular patterns“

PB:

Peripheres Blut

PBMC:

„Peripheral blood mononuclear cell“

PD-1:

„Programmed death-1“

PRR:

„Pattern recognition receptors“

PTPN:

„Protein tyrosine phosphatase, non-receptor“

RA:

Rheumatoide Arthritis

RAGE:

„Receptor for advanced glycation end products“

RF:

Rheumafaktor

RNA:

Ribonukleinsäure

SF:

Synovialflüssigkeit

SLE:

Systemischer Lupus erythematosus

SNPs:

„Single nucleotide polymorphisms“

SOCS:

„Suppressor of cytokine signaling“

STAT:

„Signal transducers and activator of transcription“

Teff:

T-Effektorzelle

TGF:

„Transforming growth factor“

Th:

T-Helferzelle

TLR:

„Toll-like receptor“

TNF:

Tumornekrosefaktor

TNFR:

TNF-Rezeptor

Treg:

Regulatorische T-Zelle

Literatur

  1. Aggarwal A, Agarwal S, Misra R (2007) Chemokine and chemokine receptor analysis reveals elevated interferon-inducible protein-10 (IP)-10/CXCL10 levels and increased number of CCR5+ and CXCR3+ CD4 T cells in synovial fluid of patients with enthesitis-related arthritis (ERA). Clin Exp Immunol 148: 515–519

    Article  PubMed  CAS  Google Scholar 

  2. Agostini L, Martinon F, Burns K et al. (2004) NALP3 forms an IL-1beta-processing inflammasome with increased activity in Muckle-Wells autoinflammatory disorder. Immunity 20: 319–325

    Article  PubMed  CAS  Google Scholar 

  3. Allantaz F, Chaussabel D, Stichweh D et al. (2007) Blood leukocyte microarrys to diganose systemic onset juvenile idiopathic arthritis and follow the response to IL-1 blockade. J Exp Med 21: 31–44

    Google Scholar 

  4. Andrews NR, Chaney JM, Mullins LL et al. (2007) Brief report: illness intrusiveness and adjustment among native American and Caucasian parents of children with juvenile rheumatic diseases. J Pediatr Psychol 32: 1259–1263

    Article  PubMed  Google Scholar 

  5. Aupperle KR, Bennett BL, Boyle DL et al. (1999) NFkappa B regulation by I kappa B kinase in primary fibroblast-like synoviocytes. J Immunol 163: 427–433

    PubMed  CAS  Google Scholar 

  6. Chikanza IC, Kuis W, Heijnen CJ (2000) The influence of the hormonal system on pediatric rheumatic diseases. Rheum Dis Clin North Am 26: 911–925

    Article  PubMed  CAS  Google Scholar 

  7. De Benedetti F, Meazza C, Vivarelli M et al. (2003) Functional and prognostic relevance of the –173 polymorphism of the macrophage migration inhibitory factor gene in systemic-onset juvenile idiopathic arthritis. Arthritis Rheum 48: 1398–1407

    Article  CAS  Google Scholar 

  8. Jager W de, Hoppenreijs EP, Wulffraat NM et al. (2007) Blood and synovial fluid cytokine signatures in patients with juvenile idiopathic arthritis: a cross-sectional study. Ann Rheum Dis 66: 589–598

    Article  PubMed  CAS  Google Scholar 

  9. Kleer IM de, Kamphuis SM, Rijkers GT et al. (2003) The spontaneous remission of juvenile idiopathic arthritis is characterized by CD30+ T cells directed to human heat-shock protein 60 capable of producing the regulatory cytokine interleukin-10. Arthritis Rheum 48: 2001–2010

    Article  PubMed  CAS  Google Scholar 

  10. Kleer IM de, Wedderburn LR, Taams LS et al. (2004) CD4+CD25bright regulatory T cells actively regulate inflammation in the joints of patients with the remitting form of juvenile idiopathic arthritis. J Immunol 172: 6435–6443

    PubMed  Google Scholar 

  11. Delpech M, Grateau G (2001) Genetically determined recurrent fevers. Curr Opin Immunol 13: 539–542

    Article  PubMed  CAS  Google Scholar 

  12. Donn RP, Farhan A, Stevans A et al. (2002) Neuroendocrine gene polymorphisms and susceptibility to juvenile idiopathic arthritis. Rheumatology (Oxford) 41: 930–936

    Google Scholar 

  13. Drenth JP, Meer JW van der (2006) The inflammasome–a linebacker of innate defense. N Engl J Med 355: 730–732

    Article  PubMed  CAS  Google Scholar 

  14. Faber C, Morbach H, Singh SK, Girschick HJ (2006) Differential expression patterns of recombination-activating genes in individual mature B cells in juvenile idiopathic arthritis. Ann Rheum Dis 65: 1351–1356

    Article  PubMed  CAS  Google Scholar 

  15. Fall N, Barnes M, Thornton S et al. (2007) Gene expression profiling of peripheral blood from patients with untreated new-onset systemic juvenile idiopathic arthritis reveals molecular heterogeneity that may predict macrophage activation syndrome. Arthritis Rheum 56: 3793–3804

    Article  PubMed  CAS  Google Scholar 

  16. Fishman D, Faulds G, Jeffery R et al. (1998) The effect of novel polymorphisms in the interleukin-6 (IL-6) gene on IL-6 transcription and plasma IL-6 levels, and an association with systemic-onset juvenile chronic arthritis. J Clin Invest 102: 1369–1376

    Article  PubMed  CAS  Google Scholar 

  17. Foell D, Wittkowski H, Roth J (2007) Mechanisms of disease: a ‚DAMP‘ view of inflammatory arthritis. Nat Clin Pract Rheumatol 3: 382–390

    Article  PubMed  CAS  Google Scholar 

  18. Frenkel LM, Nielsen K, Garakian A et al. (1996) A search for persistent rubella virus infection in persons with chronic symptoms after rubella and rubella immunization and in patients with juvenile rheumatoid arthritis. Clin Infect Dis 22: 287–294

    PubMed  CAS  Google Scholar 

  19. Gattorno M, Prigione I, Morandi F et al. (2005) Phenotypic and functional characterisation of CCR7+ and CCR7– CD4+ memory T cells homing to the joints in juvenile idiopathic arthritis. Arthritis Res Ther 7: R256–R267

    Article  PubMed  CAS  Google Scholar 

  20. Gibson DS, Bielock S, Brockbank S et al. (2006) Proteomic analysis of recurrent joint inflammatio in juvenile idiopathic arthritis. J Proteome Res 5: 1988–1995

    Article  PubMed  CAS  Google Scholar 

  21. Goldbach-Mansky R, Dailey NJ, Canna SW et al. (2006) Neonatal-onset multisystem inflammatory disease responsive to interleukin-1beta inhibition. N Engl J Med 355: 581–592

    Article  PubMed  CAS  Google Scholar 

  22. Gonzalez B, Larranaga C, Leon O et al. (2007) Parvovirus B19 may have a role in the pathogenesis of juvenile idiopathic arthritis. J Rheumatol 34: 1336–1340

    PubMed  Google Scholar 

  23. Goodyear M (2006) Learning from the TGN1412 trial. BMJ 332: 677–678

    Article  PubMed  Google Scholar 

  24. Graham B, Gibson SB (2005) The two faces of NFkappaB in cell survival responses. Cell Cycle 4: 1342–1345

    PubMed  CAS  Google Scholar 

  25. Gregersen PK (2007) Modern genetics, ancient defenses, and potential therapies. N Engl J Med 356: 1263–1266

    Article  PubMed  Google Scholar 

  26. Gregorio A, Gambini C, Gerloni V et al. (2007) Lymphoid neogenesis in juvenile idiopathic arthritis correlates with ANA positivity and plasma cells infiltration. Rheumatology (Oxford) 46: 308–313

    Google Scholar 

  27. Grom AA, Hirsch R (2000) T-cell and T-cell receptor abnormalities in the immunopathogenesis of juvenile rheumatoid arthritis. Curr Opin Rheumatol 12: 420–424

    Article  PubMed  CAS  Google Scholar 

  28. Handel ML, Girgis L (2001) Transcription factors. Best Pract Res Clin Rheumatol 15: 657–675

    Article  PubMed  CAS  Google Scholar 

  29. Hasko G, Cronstein BN (2004) Adenosine: an endogenous regulator of innate immunity. Trends Immunol 25: 33–39

    Article  PubMed  CAS  Google Scholar 

  30. Hinks A, Barton A, John S et al. (2005) Association between the PTPN22 gene and rheumatoid arthritis and juvenile idiopathic arthritis in a UK population: further support that PTPN22 is an autoimmunity gene. Arthritis Rheum 52: 1694–1699

    Article  PubMed  CAS  Google Scholar 

  31. Jarvis JN, Jiang K, Petty HR, Centola M (2007) Neutrophils: the forgotten cell in JIA disease pathogenesis. Pediatr Rheumatol Online J 5: 13

    Article  PubMed  Google Scholar 

  32. Kamphuis S, Hrafnkelsdottir K, Klein MR et al. (2006) Novel self-epitopes derived from aggrecan, fibrillin, and matrix metalloproteinase-3 drive distinct autoreactive T-cell responses in juvenile idiopathic arthritis and in health. Arthritis Res Ther 8: R178

    Article  PubMed  CAS  Google Scholar 

  33. Kamphuis S, Kuis W, Jager W de et al. (2005) Tolerogenic immune responses to novel T-cell epitopes from heat-shock protein 60 in juvenile idiopathic arthritis. Lancet 366: 50–56

    Article  PubMed  CAS  Google Scholar 

  34. Knipp S, Feyen O, Ndagijimana J, Niehues T (2003) Ex vivo apoptosis, CD95 and CD28 expression in T cells of children with juvenile idiopathic arthritis. Rheumatol Int 23: 112–115

    PubMed  CAS  Google Scholar 

  35. Kremer JM, Dougados M, Emery P et al. (2005) Treatment of rheumatoid arthritis with the selective costimulation modulator abatacept: twelve-month results of a phase iib, double-blind, randomized, placebo-controlled trial. Arthritis Rheum 52: 2263–2271

    Article  PubMed  CAS  Google Scholar 

  36. Kremer JM, Westhovens R, Leon M et al. (2003) Treatment of rheumatoid arthritis by selective inhibition of T-cell activation with fusion protein CTLA4Ig. N Engl J Med 349: 1907–1915

    Article  PubMed  CAS  Google Scholar 

  37. Lehmann HW, Knoll A, Kuster RM, Modrow S (2003) Frequent infection with a viral pathogen, parvovirus B19, in rheumatic diseases of childhood. Arthritis Rheum 48: 1631–1638

    Article  PubMed  Google Scholar 

  38. Lequerre T, Quartier P, Rosellini D et al. (2007) Interleukin-1 receptor antagonist (anakinra) treatment in patients with systemic-onset juvenile idiopathic arthritis or adult onset Still’s disease. Preliminary experience in France. Ann Rheum Dis [E-pub ahead of print, Oct 18]

  39. Lindner E, Nordang GB, Melum E et al. (2007) Lack of association between the chemokine receptor 5 polymorphism CCR5delta32 in rheumatoid arthritis and juvenile idiopathic arthritis. BMC Med Genet 8: 33

    Article  PubMed  CAS  Google Scholar 

  40. Lundy SK, Sarkar S, Tesmer LA, Fox DA (2007) Cells of the synovium in rheumatoid arthritis. T lymphocytes. Arthritis Res Ther 9: 202

    Article  PubMed  CAS  Google Scholar 

  41. Maccioni M, Zeder-Lutz G, Huang H et al. (2002) Arthritogenic monoclonal antibodies from K/BxN mice. J Exp Med 195: 1071–1077

    Article  PubMed  CAS  Google Scholar 

  42. Mariathasan S, Monack DM (2007) Inflammasome adaptors and sensors: intracellular regulators of infection and inflammation. Nat Rev Immunol 7: 31–40

    Article  PubMed  CAS  Google Scholar 

  43. Martini G, Zulian F, Calabrese F et al. (2005) CXCR3/CXCL10 expression in the synovium of children with juvenile idiopathic arthritis. Arthritis Res Ther 7: R241–R249

    Article  PubMed  CAS  Google Scholar 

  44. Massa M, Mazzoli F, Pignatti P et al. (2002) Proinflammatory responses to self HLA epitopes are triggered by molecular mimicry to Epstein-Barr virus proteins in oligoarticular juvenile idiopathic arthritis. Arthritis Rheum 46: 2721–2729

    Article  PubMed  CAS  Google Scholar 

  45. Mayor S (2006) Severe adverse reactions prompt call for trial design changes. BMJ 332: 683

    Article  PubMed  Google Scholar 

  46. Mitchell JA, Paul-Clark MJ, Clarke GW et al. (2007) Critical role of toll-like receptors and nucleotide oligomerisation domain in the regulation of health and disease. J Endocrinol 193: 323–330

    Article  PubMed  CAS  Google Scholar 

  47. Miyamae T, Malehorn DE, Lemster B et al. (2005) Serum protein profile in systemic-onset juvenile idiopathic arthritis differentiates response versus nonresponse to therapy. Arthritis Res Ther 7: R746–R755

    Article  PubMed  CAS  Google Scholar 

  48. Niehues T, Reichenbach J, Neubert J et al. (2004) Nuclear factor kappaB essential modulator-deficient child with immunodeficiency yet without anhidrotic ectodermal dysplasia. J Allergy Clin Immunol 114: 1456–1462

    Article  PubMed  Google Scholar 

  49. Ogilvie EM, Khan A, Hubank M et al. (2007) Specific gene expression profiles in systemic juvenile idiopathic arthritis. Arthritis Rheum 56: 1954–1965

    Article  PubMed  CAS  Google Scholar 

  50. Okamoto T (2006) NF-kappaB and rheumatic diseases. Endocr Metab Immune Disord Drug Targets 6: 359–372

    PubMed  CAS  Google Scholar 

  51. Pap T (2007) [Regulation of apoptosis in aggressive fibroblasts]. Z Rheumatol 66: 239–240, 242

    Article  PubMed  CAS  Google Scholar 

  52. Petty RE, Southwood TR, Manners P et al. (2004) International league of associations for rheumatology classification of juvenile idiopathic arthritis: second revision, Edmonton, 2001. J Rheumatol 31: 390–392

    PubMed  Google Scholar 

  53. Pharoah DS, Varsani H, Tatham RW et al. (2006) Expression of the inflammatory chemokines CCL5, CCL3 and CXCL10 in juvenile idiopathic arthritis, and demonstration of CCL5 production by an atypical subset of CD8+ T cells. Arthritis Res Ther 8: R50

    Article  PubMed  CAS  Google Scholar 

  54. Prahalad S, Bohnsack JF, Jorde LB et al. (2006) Association of two functional polymorphisms in the CCR5 gene with juvenile rheumatoid arthritis. Genes Immun 7: 468–475

    Article  PubMed  CAS  Google Scholar 

  55. Puga Yung GL, Le TD, Roord S et al. (2003) Heat shock proteins (HSP) for immunotherapy of rheumatoid arthritis (RA). Inflamm Res 52: 443–451

    Article  CAS  Google Scholar 

  56. Ravelli A, Martini A (2007) Juvenile idiopathic arthritis. Lancet 369: 767–778

    Article  PubMed  CAS  Google Scholar 

  57. Rieck M, Arechiga A, Onengut-Gumuscu S et al. (2007) Genetic variation in PTPN22 corresponds to altered function of T and B lymphocytes. J Immunol 179: 4704–4710

    PubMed  CAS  Google Scholar 

  58. Roupe van der Voort C, Heijnen CJ, Wulffraat N et al. (2000) Stress induces increases in IL-6 production by leucocytes of patients with the chronic inflammatory disease juvenile rheumatoid arthritis: a putative role for alpha(1)- adrenergic receptors. J Neuroimmunol 110: 223–229

    Article  Google Scholar 

  59. Ruprecht CR, Gattorno M, Ferlito F et al. (2005) Coexpression of CD25 and CD27 identifies FoxP3+ regulatory T cells in inflamed synovia. J Exp Med 201: 1793–1803

    Article  PubMed  CAS  Google Scholar 

  60. Sioud M, Kjeldsen-Kragh J, Suleyman S et al. (1992) Limited heterogeneity of T cell receptor variable region gene usage in juvenile rheumatoid arthritis synovial T cells. Eur J Immunol 22: 2413–2418

    Article  PubMed  CAS  Google Scholar 

  61. Sioud M, Mellbye O, Forre O (1998) Analysis of the NF-kappa B p65 subunit, Fas antigen, Fas ligand and Bcl-2-related proteins in the synovium of RA and polyarticular JRA. Clin Exp Rheumatol 16: 125–134

    PubMed  CAS  Google Scholar 

  62. Smolewska E, Brozik H, Smolewski P et al. (2004) Regulation of peripheral blood and synovial fluid lymphocyte apoptosis in juvenile idiopathic arthritis. Scand J Rheumatol 33: 7–12

    Article  PubMed  CAS  Google Scholar 

  63. Thomson W, Barrett JH, Donn R et al. (2002) Juvenile idiopathic arthritis classified by the ILAR criteria: HLA associations in UK patients. Rheumatology (Oxford) 41: 1183–1189

    Google Scholar 

  64. Tsai YT, Chiang BL, Kao YF, Hsieh KH (1995) Detection of Epstein-Barr virus and cytomegalovirus genome in white blood cells from patients with juvenile rheumatoid arthritis and childhood systemic lupus erythematosus. Int Arch Allergy Immunol 106: 235–240

    Article  PubMed  CAS  Google Scholar 

  65. Vabulas RM, Ahmad-Nejad P, da Costa C et al. (2001) Endocytosed HSP60 s use toll-like receptor 2 (TLR2) and TLR4 to activate the toll/interleukin-1 receptor signaling pathway in innate immune cells. J Biol Chem 276: 31332–31339

    Article  PubMed  CAS  Google Scholar 

  66. Vogl T, Tenbrock K, Ludwig S et al. (2007) Mrp8 and Mrp14 are endogenous activators of Toll-like receptor 4, promoting lethal, endotoxin-induced shock. Nat Med 13: 1042–1049

    Article  PubMed  CAS  Google Scholar 

  67. Wan B, Nie H, Liu A et al. (2006) Aberrant regulation of synovial T cell activation by soluble costimulatory molecules in rheumatoid arthritis. J Immunol 177: 8844–8850

    PubMed  CAS  Google Scholar 

  68. Wedderburn LR, Robinson N, Patel A et al. (2000) Selective recruitment of polarized T cells expressing CCR5 and CXCR3 to the inflamed joints of children with juvenile idiopathic arthritis. Arthritis Rheum 43: 765–774

    Article  PubMed  CAS  Google Scholar 

  69. Weissbrich B, Suss-Frohlich Y, Girschick HJ (2007) Seroprevalence of parvovirus B19 IgG in children affected by juvenile idiopathic arthritis. Arthritis Res Ther 9: R82

    Article  PubMed  CAS  Google Scholar 

  70. Woo P, Wilkinson N, Prieur AM et al. (2005) Open label phase II trial of single, ascending doses of MRA in Caucasian children with severe systemic juvenile idiopathic arthritis: proof of principle of the efficacy of IL-6 receptor blockade in this type of arthritis and demonstration of prolonged clinical improvement. Arthritis Res Ther 7: R1281–R1288

    Article  PubMed  CAS  Google Scholar 

  71. Yokota S, Miyamae T, Imagawa T et al. (2005) Therapeutic efficacy of humanized recombinant anti-interleukin-6 receptor antibody in children with systemic-onset juvenile idiopathic arthritis. Arthritis Rheum 52: 818–825

    Article  PubMed  CAS  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Niehues.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niehues, T., Feyen, O. & Telieps, T. Vorstellungen zur Pathogenese der juvenilen idiopathischen Arthritis. Z. Rheumatol. 67, 111–120 (2008). https://doi.org/10.1007/s00393-008-0276-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00393-008-0276-7

Schlüsselwörter

Keywords

Navigation