Skip to main content

Advertisement

Log in

T-Zell-abhängige Monozytenaktivierung, TNFα und Apolipoprotein A-I in Autoimmunität und Inflammation

T cell-dependent monocyte activation, TNFα and apolipoprotein A-I in autoimmunity and inflammation

  • BEITRAG ZUM SCHWERPUNKTTHEMA
  • Published:
Zeitschrift für Rheumatologie Aims and scope Submit manuscript

Zusammenfassung

Die Rheumatoide Arthritis ist gekennzeichnet durch eine massive Produktion der Monokine TNFα, IL-6 und IL-1β in der Synovialmembran, wobei Monozyten und Makrophagen die Hauptproduzenten dieser Zytokine sind. Bisher ist noch unklar, wie es zu einer Aktivierung dieser Zellen kommt. Ein möglicher Mechanismus ist die zellkontaktabhängige Aktivierung der Monozyten/Makrophagen durch aktivierte T-Zellen. Der direkte Zellkontakt von Monozyten/Makrophagen und T-Zellen führt zu einer starken Produktion von proinflammatorischen Zytokinen, wie z. B. TNFα und IL-1β. Unter nicht-pathologischen Bedingungen muss dieser Mechanismus einer strengen Kontrolle unterliegen, um systemische inflammatorische Reaktionen zu vermeiden. Das Vorhandensein von inhibitorischen Faktoren im Serum könnte einen solchen Mechanismus repräsentieren. Im Serum von gesunden Spendern wurde Apolipoprotein A-I als ein solcher Faktor identifiziert. Apolipoprotein A-I ist als negatives Akut- Phase-Protein bei Patienten mit Rheumatoider Arthritis in deutlich verminderten Konzentrationen im Serum zu finden. Die Rolle dieses und ähnlicher inhibitorischer Serummoleküle bei Autoimmunerkrankung, Sepsis und Arteriosklerose wird diskutiert.

Summary

Rheumatoid arthritis is characterized by a massive overproduction of monokines like TNFα, IL-6 and IL-1β, which are predominantly produced by monocytes and macrophages. To date, the exact mechanisms of monocyte/macrophage activation have not been fully elucidated. One possible mechanism is their cell contact-dependent activation by activated T cells. The direct cell contact of monocytes/macrophages and T cells leads to an increased production of pro-inflammatory cytokines such as TNFα and IL-1β. Stringent control of this mechanism by inhibitory factors appears mandatory under physiological conditions in order to avoid systemic cytokine release syndromes. The presence of inhibitory factors in the serum could represent such a mechanism. In healthy donors, apolipoprotein A-I was identified as such an inhibitory serum protein. In patients with rheumatoid arthritis, apolipoprotein A-I is found in decreased concentrations, possibly due to its role as a negative acute phase protein. The role of this and other inhibitory serum molecules are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Burger D (2000) Cell contact-mediated signaling of monocytes by stimulated T cells: a major pathway for cytokine induction. Eur Cytokine Netw 11(3):346–353

    CAS  PubMed  Google Scholar 

  2. Firestein GS, Zvaifler NJ (2002) How important are T cells in chronic rheumatoid synovitis?: II. T cell-independent mechanisms from beginning to end. Arthritis Rheum 46(2):298–308

    CAS  PubMed  Google Scholar 

  3. Edwards JC, Sedgwick AD, Willoughby DA (1982) Membrane properties and esterase activity of synovial lining cells: further evidence for a mononuclear phagocyte subpopulation. Ann Rheum Dis 41(3):282–286

    CAS  PubMed  Google Scholar 

  4. Goronzy JJ, Weyand CM (2004) T-cell regulation in rheumatoid arthritis. Curr Opin Rheumatol 16(3):212–217

    CAS  PubMed  Google Scholar 

  5. Firestein GS, Zvaifler NJ (2002) How important are T cells in chronic rheumatoid synovitis?: II. T cell-independent mechanisms from beginning to end. Arthritis Rheum 46(2):298–308

    CAS  PubMed  Google Scholar 

  6. Cutolo M, Sulli A, Barone A, Seriolo B, Accardo S (1993) Macrophages, synovial tissue and rheumatoid arthritis. Clin Exp Rheumatol 11(3):331–339

    CAS  PubMed  Google Scholar 

  7. Burmester GR, Dimitriu-Bona A, Waters SJ, Winchester RJ (1983) Identification of three major synovial lining cell populations by monoclonal antibodies directed to Ia antigens and antigens associated with monocytes/macrophages and fibroblasts. Scand J Immunol 17(1):69–82

    CAS  PubMed  Google Scholar 

  8. Brennan FM, Chantry D, Jackson AM, Maini RN, Feldmann M (1989) Cytokine production in culture by cells isolated from the synovial membrane. J Autoimmun 2 Suppl:177–186

    PubMed  Google Scholar 

  9. Janossy G, Panayi G, Duke O, Bofill M, Poulter LW, Goldstein G (1981) Rheumatoid arthritis: a disease of Tlymphocyte/macrophage immunoregulation. Lancet 2(8251):839–842

    CAS  PubMed  Google Scholar 

  10. Isler P, Vey E, Zhang JH, Dayer JM (1993) Cell surface glycoproteins expressed on activated human T cells induce production of interleukin-1 beta by monocytic cells: a possible role of CD69. Eur Cytokine Netw 4(1):15–23

    CAS  PubMed  Google Scholar 

  11. Brennan FM, Hayes AL, Ciesielski CJ, Green P, Foxwell BM, Feldmann M (2002) Evidence that rheumatoid arthritis synovial T cells are similar to cytokine-activated T cells: involvement of phosphatidylinositol 3-kinase and nuclear factor kappaB pathways in tumor necrosis factor alpha production in rheumatoid arthritis. Arthritis Rheum 46(1):31–41

    CAS  PubMed  Google Scholar 

  12. McInnes IB, Leung BP, Sturrock RD, Field M, Liew FY (1997) Interleukin-15 mediates T cell-dependent regulation of tumor necrosis factor-alpha production in rheumatoid arthritis. Nat Med 3(2):189–195

    CAS  PubMed  Google Scholar 

  13. Manie S, Kubar J, Limouse M, Ferrua B, TicchioniM, Breittmayer JP et al (1993) CD3-stimulated Jurkat T cells mediate IL-1 beta production in monocytic THP-1 cells. Role of LFA-1 molecule and participation of CD69 T cell antigen. Eur Cytokine Netw 4(1):7–13

    CAS  PubMed  Google Scholar 

  14. Lecoanet-Henchoz S, Gauchat JF, Aubry JP, Graber P, Life P, Paul-Eugene N et al (1995) CD23 regulates monocyte activation through a novel interaction with the adhesion molecules CD11b-CD18 and CD11c-CD18. Immunity 3(1):119–125

    CAS  PubMed  Google Scholar 

  15. Armant M, Rubio M, Delespesse G, Sarfati M (1995) Soluble CD23 directly activates monocytes to contribute to the antigen-independent stimulation of resting T cells. J Immunol 155(10):4868–4875

    CAS  PubMed  Google Scholar 

  16. Rezzonico R, Chicheportiche R, Imbert V, Dayer JM (2000) Engagement of CD11b and CD11c beta2 integrin by antibodies or soluble CD23 induces IL-1beta production on primary human monocytes through mitogen-activated protein kinase-dependent pathways. Blood 95(12):3868–3877

    CAS  PubMed  Google Scholar 

  17. McInnes IB, Leung BP, Sturrock RD, Field M, Liew FY (1997) Interleukin-15 mediates T cell-dependent regulation of tumor necrosis factor-alpha production in rheumatoid arthritis. Nat Med 3(2):189–195

    CAS  PubMed  Google Scholar 

  18. Foey AD, Feldmann M, Brennan FM (2001) CD40 ligation induces macrophage IL-10 and TNF-alpha production: differential use of the PI3K and p42/44 MAPK-pathways. Cytokine 16(4):131–142

    CAS  PubMed  Google Scholar 

  19. Avice MN, Sarfati M, Triebel F, Delespesse G, Demeure CE (1999) Lymphocyte activation gene-3, a MHC class II ligand expressed on activated T cells, stimulates TNF-alpha and IL-12 production by monocytes and dendritic cells. J Immunol 162(5):2748–2753

    CAS  PubMed  Google Scholar 

  20. Parry SL, Sebbag M, Feldmann M, Brennan FM (1997) Contact with T cells modulates monocyte IL-10 production: role of T cell membrane TNF-alpha. J Immunol 158(8):3673–3681

    CAS  PubMed  Google Scholar 

  21. Isler P, Vey E, Zhang JH, Dayer JM (1993) Cell surface glycoproteins expressed on activated human T cells induce production of interleukin-1 beta by monocytic cells: a possible role of CD69. Eur Cytokine Netw 4(1):15–23

    CAS  PubMed  Google Scholar 

  22. McInnes IB, Leung BP, Sturrock RD, Field M, Liew FY (1997) Interleukin-15 mediates T cell-dependent regulation of tumor necrosis factor-alpha production in rheumatoid arthritis. Nat Med 3(2):189–195

    CAS  PubMed  Google Scholar 

  23. Vey E, Zhang JH, Dayer JM (1992) IFN-gamma and 1,25(OH)2D3 induce on THP-1 cells distinct patterns of cell surface antigen expression, cytokine production, and responsiveness to contact with activated T cells. J Immunol 149(6):2040–2046

    CAS  PubMed  Google Scholar 

  24. Parry SL, Sebbag M, Feldmann M, Brennan FM (1997) Contact with T cells modulates monocyte IL-10 production: role of T cell membrane TNF-alpha. J Immunol 158(8):3673–3681

    CAS  PubMed  Google Scholar 

  25. Suttles J, Miller RW, Tao X, Stout RD (1994) T cells which do not express membrane tumor necrosis factor-alpha activate macrophage effector function by cell contact-dependent signaling of macrophage tumor necrosis factor-alpha production. Eur J Immunol 24(8):1736–1742

    CAS  PubMed  Google Scholar 

  26. Isler P, Vey E, Zhang JH, Dayer JM (1993) Cell surface glycoproteins expressed on activated human T cells induce production of interleukin-1 beta by monocytic cells: a possible role of CD69. Eur Cytokine Netw 4(1):15–23

    CAS  PubMed  Google Scholar 

  27. Lacraz S, Isler P, Vey E, Welgus HG, Dayer JM (1994) Direct contact between T lymphocytes and monocytes is a major pathway for induction of metalloproteinase expression. J Biol Chem 269(35):22027–22033

    CAS  PubMed  Google Scholar 

  28. Fahmi H, Chaby R (1993) Selective refractoriness of macrophages to endotoxin-induced production of tumor necrosis factor, elicited by an autocrine mechanism. J Leukoc Biol 53(1):45–52

    CAS  PubMed  Google Scholar 

  29. Hyka N, Dayer JM, Modoux C, Kohno T, Edwards CK, III, Roux-Lombard P et al (2001) Apolipoprotein A-I inhibits the production of interleukin- 1beta and tumor necrosis factor-alpha by blocking contact-mediated activation of monocytes by T lymphocytes. Blood 97(8):2381–2389

    CAS  PubMed  Google Scholar 

  30. Majetschak M, Krehmeier U, Bardenheuer M, Denz C, Quintel M, Voggenreiter G et al (2003) Extracellular ubiquitin inhibits the TNF-alpha response to endotoxin in peripheral blood mononuclear cells and regulates endotoxin hyporesponsiveness in critical illness. Blood 101(5):1882–1890

    CAS  PubMed  Google Scholar 

  31. Zhang WJ, Frei B (2002) Albumin selectively inhibits TNF alpha-induced expression of vascular cell adhesion molecule-1 in human aortic endothelial cells. Cardiovasc Res 55(4):820–829

    CAS  PubMed  Google Scholar 

  32. Lahita RG, Rivkin E, Cavanagh I, Romano P (1993) Low levels of total cholesterol, high-density lipoprotein, and apolipoprotein A1 in association with anticardiolipin antibodies in patients with systemic lupus erythematosus. Arthritis Rheum 36(11):1566–1574

    CAS  PubMed  Google Scholar 

  33. Svenungsson E, Gunnarsson I, Fei GZ, Lundberg IE, Klareskog L, Frostegard J (2003) Elevated triglycerides and low levels of high-density lipoprotein as markers of disease activity in association with up-regulation of the tumor necrosis factor alpha/tumor necrosis factor receptor system in systemic lupus erythematosus. Arthritis Rheum 48(9):2533–2540

    CAS  PubMed  Google Scholar 

  34. Burger D, Dayer JM (2002) Cytokines, acute-phase proteins, and hormones: IL-1 and TNF-alpha production in contact-mediated activation of monocytes by T lymphocytes. Ann N Y Acad Sci 966:464–473

    CAS  PubMed  Google Scholar 

  35. Park YB, Lee SK, Lee WK, Suh CH, Lee CW, Lee CH et al (1999) Lipid profiles in untreated patients with rheumatoid arthritis. J Rheumatol 26(8):1701–1704

    CAS  PubMed  Google Scholar 

  36. Lakatos J, Harsagyi A (1988) Serum total, HDL, LDL cholesterol, and triglyceride levels in patients with rheumatoid arthritis. Clin Biochem 21(2):93–96

    CAS  PubMed  Google Scholar 

  37. Doherty NS, Littman BH, Reilly K, Swindell AC, Buss JM, Anderson NL (1998) Analysis of changes in acutephase plasma proteins in an acute inflammatory response and in rheumatoid arthritis using two-dimensional gel electrophoresis. Electrophoresis 19(2):355–363

    CAS  PubMed  Google Scholar 

  38. Vuilleumier N, Reber G, James R, Burger D, de Moerloose P, Dayer JM et al (2004) Presence of autoantibodies to apolipoprotein A-1 in patients with acute coronary syndrome further links autoimmunity to cardiovascular disease. J Autoimmun 23(4):353–360

    CAS  PubMed  Google Scholar 

  39. Bresnihan B, Gogarty M, FitzGerald O, Dayer JM, Burger D (2004) Apolipoprotein A-I infiltration in rheumatoid arthritis synovial tissue: a control mechanism of cytokine production? Arthritis Res Ther 6(6):R563–R566

    CAS  Google Scholar 

  40. Ananth L, Prete PE, Kashyap ML (1993) Apolipoproteins A-I and B and cholesterol in synovial fluid of patients with rheumatoid arthritis. Metabolism 42(7):803–806

    CAS  PubMed  Google Scholar 

  41. Chenaud C, Merlani PG, Roux-Lombard P, Burger D, Harbarth S, Luyasu S et al (2004) Low apolipoprotein A-I level at intensive care unit admission and systemic inflammatory response syndrome exacerbation. Crit Care Med 32(3):632–637

    CAS  PubMed  Google Scholar 

  42. McCarey DW, McInnes IB, Madhok R, Hampson R, Scherbakov O, Ford I et al (2004) Trial of Atorvastatin in Rheumatoid Arthritis (TARA): doubleblind, randomised placebo-controlled trial. Lancet 363(9426):2015–2021

    CAS  PubMed  Google Scholar 

  43. Almog Y, Shefer A, Novack V, Maimon N, Barski L, Eizinger M et al (2004) Prior statin therapy is associated with a decreased rate of severe sepsis. Circulation 110(7):880–885

    CAS  PubMed  Google Scholar 

  44. Bocharov AV, Baranova IN, Vishnyakova TG, Remaley AT, Csako G, Thomas F et al. Targeting of scavenger receptor class B type I by synthetic amphipathic alpha-helical-containing peptides blocks lipopolysaccharide (LPS) uptake and LPS-induced proinflammatory cytokine responses in THP-1 monocyte cells. J Biol Chem 279(34):36072–36082

    Google Scholar 

  45. Cockerill GW, Huehns TY, Weerasinghe A, Stocker C, Lerch PG, Miller NE et al (2001) Elevation of plasma high-density lipoprotein concentration reduces interleukin-1-induced expression of E-selectin in an in vivo model of acute inflammation. Circulation 103(1):108–112

    CAS  PubMed  Google Scholar 

  46. Li X, Chyu KY, Neto JR, Yano J, Nathwani N, Ferreira C et al (2004) Differential effects of apolipoprotein A-I-mimetic peptide on evolving and established atherosclerosis in apolipoprotein E-null mice. Circulation 110(12):1701–1705

    CAS  PubMed  Google Scholar 

  47. Baroukh N, Lopez CE, Saleh MC, Recalde D, Vergnes L, Ostos MA et al (2004) Expression and secretion of human apolipoprotein A-I in the heart. FEBS Lett 557(1–3):39–44

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rossol, M., Häntzschel, H. & Wagner, U. T-Zell-abhängige Monozytenaktivierung, TNFα und Apolipoprotein A-I in Autoimmunität und Inflammation. Z. Rheumatol. 64, 249–254 (2005). https://doi.org/10.1007/s00393-005-0735-3

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00393-005-0735-3

Schlüsselwörter

Key words

Navigation