Skip to main content

Advertisement

Log in

Häufigkeit terminal differenzierter Fibroblasten in der Synovialmembran von Rheumapatienten

Frequency of terminally differentiated fibroblasts in the synovial membrane of rheumatoid arthritis patients

  • ORIGINALARBEIT
  • Published:
Zeitschrift für Rheumatologie Aims and scope Submit manuscript

Zusammenfassung

Die metabolische Aktivierung synovialer Fibroblasten (SF), deren Expression von Matrix-abbauenden Enzymen und inflammatorischen Zytokinen trägt zur Pathologie der rheumatoiden Arthritis (RA) bei. Auffallend ist der Befund, dass SF von Rheumapatienten trotz metabolischer Aktivierung nicht schneller proliferieren als SF anderer Patienten, aber gegenüber apoptoseinduzierenden Signalen resistent sind. Die chronische Entzündung bei RA führt zunehmend zur Fibrosierung des synovialen Gewebes und Fibrosierung wurde in anderem Zusammenhang mit fortschreitender, terminaler Differenzierung der Fibroblasten assoziiert. In dieser Arbeit wurde daher untersucht, ob im RA-Synovium vermehrt terminal differenzierte Fibroblasten vorkommen, und ob ein Zusammenhang zwischen terminaler Differenzierung der SF und deren vermehrter Bildung von Metalloproteinasen und Interleukinen besteht. In dieser Studie wurden SF von vier Rheumapatienten, zwei Osteoarthrosepatienten und zwei Traumapatienten untersucht. Durch RT-PCR wurden zwei mit terminaler Differenzierung assoziierte Gene (P16-ink4a und P21-cip) in Fibroblasten nachgewiesen, gefärbt wurde das Substrat der SA-β-Galaktosidase in SF und durch Gelelektrophorese wurden Proteinmuster auf Unterschiede der Protein PIVa und des Tropomyosins untersucht.

Es konnte gezeigt werden, dass die Synovia von Rheumapatienten nicht mit terminal differenzierten Fibroblasten angereichert ist. Im Gegenteil konnte gezeigt werden, dass in der Synovia der wesentlich jüngeren Traumapatienten terminal differenzierten Fibroblasten nachweisbar sind. Wir schließen, dass der Prozess der Fibrosierung der Synovia bei RA-Patienten nicht mit terminaler Differenzierung der Fibroblasten sondern eher mit der chronischen Entzündung assoziiert ist.

Summary

The metabolic activation of synovial fibroblasts (SF) and their expression of matrix degrading enzymes and inflammatory cytokines contributes to the pathology of rheumatoid arthritis (RA). It is remarkable that SF of RA patients do not proliferate at higher rates when compared to SF of other patients, but they are resistant to apotposis inducing signals. The chronic inflammation in RA causes fibrosis of the synovial tissue and fibrosis has been associated with terminal differentiation. Therefore we investigated if there are increased numbers of terminally differentiated fibroblasts in the RA synovium and if there is a correlation between terminal differentiation of SF and increased levels of expression of interleukins and matrix metalloproteinases. We analyzed specimen of four RA patients, two patients with osteoarthritis (OA) and two healthy donors suffering from joint injuries. By use of RT-PCR techniques we examined mRNA expression of two genes in SF which are associated with terminal differentiation, p16INK4a and p21-cip. In addition, we labelled differentiated fibroblasts using the SA-β-galaktosidase assay and investigated differences in protein expression patterns of factor PIVa and the tropomyosin 1 and 2 molecules. We report that the number of terminally differentiated fibrolasts are not increased in the synovial membrane of RA patients. On the contrary we show that the synovia of the much younger patients has higher levels of terminally differentiated fibroblasts. Consequently, the fibrosis of synovial tissues in RA patients at later stages of disorder is not associated with proliferation and differentiation of the fibroblasts but rather a consequence of chronic inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Aicher W et al (2000) Analysis of cytokine and matrix protease expression in stress-activated differentiating osteoblasts. 46th Annual Meeting of the Orthopedic Research Society March 12–15, 2000, Orlando, Florida

  2. Aicher WK, Heer AH, Trabandt A, Bridges SL Jr, Schroeder HW Jr, Stransky G, Gay RE, Eibel H, Peter HH, Siebenlist U et al (1994) Overexpression of zinc-finger transcription factor Z-225/Egr-1 in synoviocytes from rheumatoid arthritis patients. J Immunol 153(11):5347

    Google Scholar 

  3. Aranega A, Marchal JA, Melguizo C, Prados J, Aranega AE, Velvez C, Fernandez JE, Arena N, Alvarez L (1996) Low sample volume causes differentiation in human rhabdomyosarcoma cell line RD subjected to electroporation. Cell Mol Biol Noisy le grand 42 (8):1219–1227

    Google Scholar 

  4. Baier A, Meineckel I, Gay S, Pap T (2003) Apoptosis in rheumatoid arthritis. Current Opinion in Rheumatology 15(3):274–279

    Google Scholar 

  5. Franz J K, Pap T, Hummel K, Nawrath M, Aicher WK, Shigeyama Y, Müller-Ladner U, Gay R, Gay S (2000) Expression of sentrin, a novel antiapoptotic molecule at sites of synovial invasion in rheumatoid arthritis. Arthritis and Rheumatism 43(3):599–607

    Google Scholar 

  6. Franz J, Kolb S, Hummel K, Lahrtz F, Neidhart M, Aicher W, Pap T, Gay R, Fontana A, Gay S (1998) Interleukin-16, produced by synovial fibroblasts, mediates chemoattraction for CD4+ T-lymphocytes in rheumatoid arthritis. Eur J Immunol 28:2661–2671

    Google Scholar 

  7. Goberdhan P, Dimiri (1995) A Biomarker that identifies senescent human cells in culture and in aging skins in vivo. Cell Biology 92:9363–9367

    Google Scholar 

  8. Hakenjos L, Bamberg M, Rodemann HP (2000) TGF-β1-mediated alterations of rat lung fibroblast differentiation resulting in the radiation-induced fibrotic response. Int J Radiat Biol 76(4):503–509

    Google Scholar 

  9. Hara E, Smith R, Parry D, Tahara H, Steven S, Peters G (1996) Regulation of p16 (CDKN2) expressions and its implications for cell immortalisartion and senescence. Molecular and Cellular Biology 16 (3):859–867

    Google Scholar 

  10. Herskind C, Rodemann HP (2000) Spontaneous and radiation-induced differentiation of fibrobalsts. Exp Gerontol 35:747–755

    Google Scholar 

  11. Hill J-A, Southwood S, Sette A, Jevnikar A-M, Bell D-A, Cairns E (2003) The conversion of arginine to citrulline allows for a high-affinity peptide interaction with the rheumatoid arthritis-associated HLA-DRB1*0401 MHC class II molecule. J-Immunol 171(2): 538–541

    Google Scholar 

  12. Kirsch T, Swoboda B, Hah HD (2000) Activation of Annexin II and V expression, terminal differentiation, mineralisation and apoptosis in human osteoarthritic cartilage. Journal of Cell Biology 139 (2):541–552

    Google Scholar 

  13. Konttinen YT, Ainola M, Valleala H, Ma J, Ida H, Mandelin J, Kinne RW, Santavirta S, Sorsa T, Lopez-Otin C, Takagi M (1999) Analysis of 16 different matrix metalloproteinases (MMP-1 to MMP-20) in synovial membrane: different profiles in trauma and rheumatoid arthritis. Ann Rheum Diss 58:691–697

    Google Scholar 

  14. Loughran O, Malliri A, Owens D, Gallimore PH, Stanley MA, Ozanne B, Frame MC, Parkinson EK (1996) Association of p16ink4a with human head and neck keratinocyte replicative senescence: relationship of dysfunktion to immortality and neoplasia. Oncogene 13 (3):561–568

    Google Scholar 

  15. Marchal JA, Prados J, Melguizo C, Fernandez JE, Velez C, Alvarez L, Aranega A (1997) Actinomycin D treatment leads to differentiation and inhibits proliferation in rhabdomyosarcoma cells. J Lab Clin Med 130(1):42–50

    Google Scholar 

  16. Olsen E, Rasmussen HH, Celis JE (1995) Identification of proteins that are abnormally regulated in differentiated cultured human keratinocytes. Electrophoresis 16 (12):2241–2248

    Google Scholar 

  17. Prados J, Melguizo C, Fernandez JE, Aranega AE, Alvarez L, Aranega A (1992) Disruption of the coordinate expression of muscle genes in a transfected BC3H1 myoblast cell line producing a low level of the adenovirus E1A transforming protein. Biochem Cell Biol 70 (10–11):1268–1276

    Google Scholar 

  18. Reznikoff CA, Yeager TA, Belair CD, Savelieva E, Puthenveettil JA, Stadler WM (1996) Elevated p16 and loss of p16 at immortalization in human papilomavirus 16 E6, but notE7, transformed human urothelial cells. Cancer Research 56(13):2886–2890

    Google Scholar 

  19. Robetorye RS, Nakanishi M, Venable SF, Pereira-Smith OM, Smith JR (1996) Regulation of p21 (Sdi1/Cip1/Waf1/mda-6) and expression of other cyclin-dependant kinase inhibitors in senescent human cells. Molecular and Cellular Differentiation 4(1):113–126

    Google Scholar 

  20. Rodemann HP, Bayrheuter K, Francz P, Dittmann K, Albiez M (1989) Selective enrichment and biochemical characterisation of seven human skin fibroblasts cell types in vitro. Exper Cell Res 180:84–93

    Google Scholar 

  21. Rodemann HP (1989) Differential degradation of intracellular proteins in human skin fibroblasts of mitotic and mitomycin C(MMC)-induced postmitotic differentiation states. Differentiation 42:37–43

    Google Scholar 

  22. Rodemann HP, Bamberg M (1995) Cellular basis of radiation-induced fibrosis. Radiother Oncol 35:83–90

    Google Scholar 

  23. Rodemann HP, Binder A, Burger A, Löffler H, Bamberg M (1996) The underlying cellular mechanisms of fibrosis. Kidney Int 49:32–36

    Google Scholar 

  24. Schiller UH (1996): Zellbiologische Untersuchungen zur radiosensitivierenden Wirkung von all-trans Retinsäure auf verschiedene in vitro kultivierte normale und Tumor-Zellpopulationen. Inauguraldissertation Universität Tübingen

  25. Schuler M, Franz J, Pap T, Weis-Klemm M, Sell S, Fontana A, Gay S, Aicher WK (2000) Regulation of IL 16 Expression in Fibroblasts by Protein Kinase Signals. Ann Rheum Dis 62:182–183

    Google Scholar 

  26. Suzuki A, Yamada R, Chang X, Tokuhiro S, Sawada T, Suzuki M, Nagasaki M, Nakayama-Hamada M, Kawaida R, Ono M, Ohtsuki M, Furukawa H, Yoshino S, Yukioka M, Tohma S, Matsubara T, Wakitani S, Teshima R, Nishioka Y, Sekine A, Iida A, Takahashi A, Tsunoda T, Nakamura Y, Yamamoto K (2003) Functional haplotypes of PADI4, encoding citrullinating enzyme peptidylarginine deiminase 4, are associated with rheumatoid arthritis. Nat-Genet 34(4):395–402

    Google Scholar 

  27. Taniguchi K, Kohsaka H, Inoue N, Terada Y, Ito H, Hirokawa K, Miyasaka N (1999) Induction of the p16ink4a senescence gene as a new therapeutic strategy for the treatment of rheumatioid arthritis. Nat-Med 5(7):760–767

    Google Scholar 

  28. Yamamoto K, Suzuki A, Chang X, Tokuhiro S, Sawada T, Nakamura Y, Yamada R (2003) Functional haplotypes in citrullinating enzyme peptidylarginine deiminase 4 are associated with rheumatoid arthritis. Arthritis Res Ther 2003 5(Suppl 3):75

    Google Scholar 

  29. Yudoh K, Matsuno H, Osada R, Nakazawa F, Katayama R, Kimura T (2000) Decreased cellular activity and replicative capacity of osteoblastic cells isolated from the periarticular bone of rheumatoid arthritis patients compared with osteoarthritis patients. Arthritis and Rheumatism 43(10):2178–2188

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. K. Aicher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmid, M., Rodemann, HP. & Aicher, W.K. Häufigkeit terminal differenzierter Fibroblasten in der Synovialmembran von Rheumapatienten. Z Rheumatol 63, 483–489 (2004). https://doi.org/10.1007/s00393-004-0634-z

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00393-004-0634-z

Schlüsselwörter

Key words

Navigation