Skip to main content
Log in

Einsatz moderner Schnittbildverfahren in der Diagnostik von Herzklappenerkrankungen

The use of cross-sectional imaging modalities in the diagnosis of valvular heart disease

  • Published:
Zeitschrift für Kardiologie Aims and scope Submit manuscript

Summary

Exact visualization of valve morphology seems to be possible with the cross-sectional imaging modalities, magnetic resonance imaging (MRI) and the recently introduced technique of multidetector computed tomography (MDCT). These techniques are used, if other non-invasive imaging modalities, like echocardiography, fail or provide only insufficient information. This commonly occurs in the assessment of right ventricular valves. Quantification of valve stenosis is possible by calculating valve orifice area, which can be performed with MRI and MDCT. An estimation of the instantaneous peak gradient can only be achieved by MR flow measurements. MR flow measurement is a reliable method to quantify the degree of mild to moderate stenoses. Quantification of valve regurgitation is possible by measurement of the regurgitation fraction with MR flow measurements as well as with MR volumetry/CT volumetry. But only the MR flow measurement is suitable for the quantification of valve regurgitation in patients with multiple valves involved or cardiac shunting. MRI and probably MDCT are the most reliable methods in the evaluation of ventricular volumes and therefore suitable for the follow-up in patients with valvular heart disease, because changes in volumes are important for therapeutic decisions in these patients. The crucial advantages of MRI compared to CT in the diagnostic of valvular heart diseases however are the absence of radiation exposure, the possibility of quantitative evaluation of valves function using flow measurements and the higher temporal resolution as compared to MDCT.

Zusammenfassung

Eine genaue Visualisierung der Klappenmorphologie ist sowohl mit der MRT als auch mit Hilfe der kürzlich eingeführten Methode der Multidetektorcomputertomographie (MDCT) möglich. Diese Methoden der Visualisierung der Klappen werden immer dann eingesetzt, wenn mit anderen nichtinvasiven Verfahren, wie z.B. der Echokardiographie, keine oder eine nur unzureichende Bildgebung möglich ist. Dies ist insbesondere bei Veränderungen der Klappen des rechten Ventrikels der Fall. Eine Quantifizierung von Klappenstenosen ist durch Bestimmung der Klappenöffnungsfläche, sowohl mit der MRT als auch mit der MDCT, durchführbar. Eine Abschätzung des instantanen Druckgradienten ist jedoch nur mit Hilfe der MR-Flussmessung möglich und liefert im Bereich von geringen bis mittleren Gradienten hinreichend zuverlässige Werte. Eine Quantifizierung von Klappeninsuffizienzen ist durch Bestimmung der Regurgitationsfraktion, sowohl mit Hilfe der MR-Flussmessung als auch mit der MR-Volumetrie oder CT-Volumetrie möglich. Nur die MR-Flussmessung lässt sich allerdings auch beim Vorliegen weiterer Klappenvitien oder kardialer Shuntverbindungen zur Quantifizierung einsetzen. Die MRT und wahrscheinlich auch die MDCT stellen die exaktesten bildgebenden Methoden zur Bestimmung der Ventrikelvolumina dar und sind damit gut geeignet für das Follow-up von Patienten mit Klappenerkrankungen, da Veränderungen der Volumina häufig therapieentscheidend sind. Die entscheidenden Vorteile der MRT gegenüber der CT in der Diagnostik von Herzklappenerkrankungen stellen die fehlende Strahlenexposition, die Möglichkeit einer quantitativen Beurteilung der Klappenfunktion durch die Flussmessung sowie die höhere zeitliche Auflösung im Vergleich zur MDCT dar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  1. Abd El Rahman MY, Abdul-Khaliq H, Vogel M, Alexi-Meskishvili V, Gutberlet M, Lange PE (2000) Relation between right ventricular enlargement, QRS duration, and right ventricular function in patients with tetralogy of Fallot and pulmonary regurgitation after surgical repair. Heart 84: 416–420

    Article  CAS  PubMed  Google Scholar 

  2. Ammar R, Porat E, Eisenberg DS, Uretzky G (1998) Utility of spiral CT in minimally invasive approach for aortic valve replacement. Eur J Cardiothorac Surg Suppl 1: S130–S133

    Google Scholar 

  3. Boehrer JD, Lange RA, Willard JE, Grayburn PA, Hillis LD (1992) Advantages and limitations of methods to detect, localise and quantitate intracardiac left-to-right shunting. Am Heart J 124: 448–455

    Article  CAS  PubMed  Google Scholar 

  4. Bogaert J, Duerinckx AJ, Rademakers FE (1999) Magnetic resonance of the heart and great vessels. Clinical applications. Springer Verlag, Berlin Heidelberg New York

    Book  Google Scholar 

  5. Bogren HG, Lantz BM, Miller RR, Mason DT (1977) Effect of respiration on cardiac motion determined by cineangiography. Implications concerning three-dimensional heart reconstruction using computer tomography. Acta Radiol 18: 609–620

    CAS  Google Scholar 

  6. Bryan AJ, Barzilai B, Kouchoukos NT (1995) Transesophageal echocardiography and adult cardiac operations. Ann Thorac Surg 59: 773–779

    Article  CAS  PubMed  Google Scholar 

  7. Caduff JH, Hernandez RJ, Ludomirsky A (1996) MR visualization of aortic valve vegetations. J Comput Assist Tomogr 20: 613–615

    Article  CAS  PubMed  Google Scholar 

  8. Chatzimavroudis GP, Walker PG, Oshinski JN, Franch RH, Pettigrew RI, Yoganathan AP (1997) Slice location dependence of aortic regurgitation measurements with MR phase velocity mapping. Magn Reson Med 37: 545–551

    Article  CAS  PubMed  Google Scholar 

  9. Dulce MC, Mostbeck GH, O’Sullivan M, Cheitlin M, Caputo GR, Higgins CB (1992) Severity of aortic regurgitation: interstudy reproducibility of measurements with velocity encoded cine MRI. Radiology 185: 235–240

    CAS  PubMed  Google Scholar 

  10. Edwards MB, Taylor KM, Shellock FG (2000) Prosthetic heart valves: evaluation of magnetic field interactions, heating, and artifacts at 1.5 T. J Magn Reson Imaging 12: 363–369

    Article  CAS  PubMed  Google Scholar 

  11. Felix R, Lackner K, Thurn P (1980) CT and the heart: present state of the art and its future. Radiologe 20: 50–55

    CAS  PubMed  Google Scholar 

  12. Gorlin R, Gorlin SG (1951) Hydraulic formula for calculation of the area of the stenotic mitral valve, other valves and central circulatory shunts. Am Heart J 131: 289–293

    Google Scholar 

  13. Gulbins H, Becker C, Kilian E, Reichenspurner H, Reichart B (2000) [Pseudoaneurysm after Bentall’s procedure in acute aortic dissection type A: diagnosis using electron beam tomography]. Z Kardiol 89: 195–198

    Article  CAS  PubMed  Google Scholar 

  14. Gutberlet M, Abdul-Khaliq H, Ehrenstein T, Amthauer H, Hoffmann T, Hosten N, Vogel M, Felix R (2000) Wertigkeit der MRT zur Quantifizierung der Pulmonalklappeninsuffizienz bei Patienten mit korrigierter Fallotscher Tetralogie. Rofo Fortschr Geb Rontgenstr Neuen Bildgeb Verfahr (Suppl) 172: 149

    Article  Google Scholar 

  15. Gutberlet M, Boeckel T, Hosten N, Vogel M, Kühne T, Oellinger H, Ehrenstein T, Venz S, Hetzer R, Bein G, Felix R (2000) Arterial switch procedure for d-transposition of the great arteries: quantitative midterm evaluation of hemodynamic changes with CINE MR imaging and phase-shift velocity mapping-initial experience. Radiology 214: 467–475

    Article  CAS  PubMed  Google Scholar 

  16. Gutberlet M, Oellinger H, Ewert P, Nagdyman N, Amthauer H, Hoffmann T, Hetzer R, Lange P, Felix R (2000) [Preand postoperative evaluation of ventricular function, muscle mass and valve morphology by magnetic resonance tomography in Ebstein’s anomaly]. Rofo Fortschr Geb Rontgenstr Neuen Bildgeb Verfahr 172: 436–442

    Article  CAS  PubMed  Google Scholar 

  17. Harell GS, Guthaner DF, Breiman RS, Morehouse CC, Seppi EJ, Marshall WH Jr, Wexler L (1977) Stop-action cardiac computed tomography. Radiology 123: 515–517

    CAS  PubMed  Google Scholar 

  18. Hatle L, Angelson B (1992) Doppler ultrasound in cardiology: physical principles and clinical applications. Lea & Febiger, Philadelphia

    Google Scholar 

  19. Heidel W, Wustenberg PW, Huth JH (1966) [Echocardiographic studies on patients with surgically treated mitral valve stenosis]. Verh Dtsch Ges Kreislaufforsch 32: 174–179

    Article  CAS  PubMed  Google Scholar 

  20. Higgins CB, Byrd BF 3d, Farmer DW, Osaki L, Silverman NH, Cheitlin MD (1984) Magnetic resonance imaging in patients with congenital heart disease. Circulation 70: 851–860

    Article  CAS  PubMed  Google Scholar 

  21. Kalender WA, Seissler W, Klotz E, Vock P (1990) Spiral volumetric CT with singlebreath-hold technique, continuous transport, and continuous scanner rotation. Radiology 176: 181–183

    CAS  PubMed  Google Scholar 

  22. Kilner PJ, Firmin DN, Rees RSO et al. (1991) Valve and great vessel stenosis: assessment with MR jet velocity mapping. Radiology 178: 229–235

    CAS  PubMed  Google Scholar 

  23. Knollmann FD, Knorig J (1999) Aortocoronary bypass surgery in a patient with aortic calcification. Circulation 100: 1131

    Article  CAS  PubMed  Google Scholar 

  24. Kozerke S, Botnar R, Oyre S, Scheidegger MB, Pedersen EM, Boesiger P (1999) Automatic vessel segmentation using active contours in cine phase contrast flow measurements. J Magn Reson Imaging 10: 41–51

    Article  CAS  PubMed  Google Scholar 

  25. Kozerke S, Scheidegger MB, Pedersen EM, Boesiger P (1999) Heart motion adapted cine phase-contrast flow measurements through the aortic valve. Magn Reson Med 42: 970–978

    Article  CAS  PubMed  Google Scholar 

  26. Lenferink S, Sechtem U (2000) [Diagnosis and therapy of an intramural hematoma of the ascending aorta]. Dtsch Med Wochenschr 125: 489–492

    Article  CAS  PubMed  Google Scholar 

  27. Lipton MJ, Higgins CB, Farmer D, Boyd DP (1984) Cardiac imaging with a highspeed cine-CT scanner: preliminary results. Radiology 152: 579–582

    CAS  PubMed  Google Scholar 

  28. Lopez JF, Hanson S, Orchard RC, Tan L (1985) Quantification of mitral valvular incompetence. Cathet Cardiovasc Diagn 11: 139–152

    Article  CAS  PubMed  Google Scholar 

  29. Melina G, Rubens MB, Birks EJ, Bizzarri F, Khaghani A, Yacoub MH (2000) A quantitative study of calcium deposition in the aortic wall following medtronic freestyle compared with homograft aortic root replacement. A prospective randomized trial. J Heart Valve Dis 9: 97–103

    CAS  PubMed  Google Scholar 

  30. Mulkern RV, Chung T (2000) From signal to image: magnetic resonance imaging physics for cardiac magnetic resonance. Pediatr Cardiol: 21: 5–17

    Article  CAS  PubMed  Google Scholar 

  31. Muller C, Obenauer S, Kopka L, Grabbe E (1999) [The diagnosis of acute aortic diseases with multiplanar-detector CT using the spiral technic]. Radiologe 39: 979–987

    Article  CAS  PubMed  Google Scholar 

  32. Nagel E, Bornstedt A, Schnackenburg B, Hug J, Oswald H, Fleck E (1999) Optimization of realtime adaptive navigator correction for 3D magnetic resonance coronary angiography. Magn Reson Med 42: 408–411

    Article  CAS  PubMed  Google Scholar 

  33. Pedersen WR, Walker M, Olsen JD (1991) Value of transesophageal echocardiography as an adjunct to transthoracic echocardiography in evaluation of native and prosthetic valve endocarditis. Chest 100: 351–356

    Article  CAS  PubMed  Google Scholar 

  34. Rebergen SA, Chin JGJ, Ottenkamp J, Wall van der EE, Roos de A (1993) Pulmonary regurgitation in the late postoperative follow-up of tetralogy of Fallot. Circulation 88: 2257–2266

    Article  CAS  PubMed  Google Scholar 

  35. Reiter SJ, Rumberger JA, Stanford W, Marcus ML (1987) Quantitative determination of aortic regurgitant volumes in dogs by ultrafast computed tomography. Circulation 76: 728–753

    Article  CAS  PubMed  Google Scholar 

  36. Sabik JF, Lytle BW, Blackstone EH, McCarthy PM, Loop FD, Cosgrove DM (2000) Long-term effectiveness of operations for ascending aortic dissections. J Thorac Cardiovasc Surg 119: 946–962

    Article  CAS  PubMed  Google Scholar 

  37. Sandstede JJ, Beer M, Hofmann S, Lipke C, Harre K, Pabst T, Kenn W, Neubauer S, Hahn D (2000) Changes in left and right ventricular cardiac function after valve replacement for aortic stenosis determined by cine MR imaging. J Magn Reson Imaging 12: 240–237

    Article  CAS  PubMed  Google Scholar 

  38. Schwitter J (2000) Valvular heart disease: assessment of valve morphology and quantification using MR. Herz 25: 342–355

    Article  CAS  PubMed  Google Scholar 

  39. Simpson IA, Maciel BC, Moises V et al. (1993) Cine magnetic resonance imaging and color Doppler flow mapping displays of flow velocity, spatial acceleration and jet formation: a comparative in vitro study. Am Heart J 126: 1165–1174

    Article  CAS  PubMed  Google Scholar 

  40. Vogel M, Gutberlet M, Dittrich S, Hosten N, Lange PE (1997) Comparison of transthoracic three dimensional echocardiography with magnetic resonance imaging in the assessment of right ventricular volume and mass. Heart 178: 127–130

    Google Scholar 

  41. Wintersperger BJ, Becker CR, Gulbins H, Knez A, Bruening R, Heuck A, Reiser MF (2000) Tumors of the cardiac valves: imaging findings in magnetic resonance imaging, electron beam computed tomography, and echocardiography. Eur Radiol 10: 443–449

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Gutberlet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gutberlet, M., Abdul-Khaliq, H., Stobbe, H. et al. Einsatz moderner Schnittbildverfahren in der Diagnostik von Herzklappenerkrankungen. Z Kardiol 90 (Suppl 6), 2–12 (2001). https://doi.org/10.1007/s003920170002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s003920170002

Key words

Schlüsselwörter

Navigation