Skip to main content

Advertisement

Log in

Multi-parametric non-contrast cardiac magnetic resonance for the differentiation between cardiac amyloidosis and hypertrophic cardiomyopathy

  • Original Paper
  • Published:
Clinical Research in Cardiology Aims and scope Submit manuscript

Abstract

Aim

To evaluate the ability of fast strain-encoded (SENC) cardiac magnetic resonance (CMR) derived myocardial strain and native T1 mapping to discriminate between hypertrophic cardiomyopathy (HCM) and cardiac amyloidosis.

Methods

Ninety nine patients (57 with hypertrophic cardiomyopathy and 42 with cardiac amyloidosis) were systematically analysed. LV-ejection fraction, LV-mass index, septal wall thickness and native T1 mapping values were assessed. In addition, global circumferential and longitudinal strain and segmental circumferential and longitudinal strain in basal, mid-ventricular, and apical segments were calculated. A ratio was built by dividing native T1 values by basal segmental strain (T1-to-basal segmental strain ratio).

Results

Myocardial strain was equally distributed in apical and basal segments in HCM patients, whereas an apical sparing with less impaired apical strain was noticed in cardiac amyloidosis (apical-to-basal-ratio of 1.01 ± 0.23 versus 1.20 ± 0.28, p < 0.001). T1 values were significantly higher in amyloidosis compared to HCM patients (1170.7 ± 66.4 ms versus 1078.3 ± 57.4ms, p < 0.001). The T1-to-basal segmental strain ratio exhibited high accuracy for the differentiation between the two clinical entities (Sensitivity = 85%, Specificity = 77%, AUC = 0.90, 95% CI = 0.81–0.95, p < 0.001). Multivariable analysis showed that age and the T1-to-basal-strain-ratio were the most robust factors for the differentiation between HCM and cardiac amyloidosis.

Conclusion

The T1-to-basal-segmental strain ratio, combining information from segmental circumferential and longitudinal strain and native T1 mapping aids the differentiation between HCM and cardiac amyloidosis with high accuracy and within a fast CMR protocol, obviating the need for contrast agent administration.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The dataset used and/or analysed is available from the corresponding author upon reasonable request.

Abbreviations

LVH:

Left-ventricular-hypertrophy

HCM:

Hypertrophic cardiomyopathy

LV:

Left ventricle

CMR:

Cardiovascular magnetic resonance

Fast-SENC:

Fast strain-encoded sequence

GLS:

Global longitudinal strain

GCS:

Global circumferential strain

AUC:

Area under the curve

BSA:

Body surface area

BMI:

Body-mass-index

LVEDV:

Left-ventricular end-diastolic volume

LVESV:

Left-ventricular end-systolic volume

IVS:

Interventricular septum

References

  1. McKenna WJ, Maron BJ, Thiene G (2017) Classification, Epidemiology, and Global Burden of Cardiomyopathies. Circ Res 121(7):722–730

    Article  CAS  PubMed  Google Scholar 

  2. Korosoglou G, Giusca S, Andre F et al (2021) Diagnostic work-up of cardiac amyloidosis using cardiovascular imaging: current standards and practical algorithms. Vasc Health Risk Manag 17:661–673

    Article  PubMed  PubMed Central  Google Scholar 

  3. Glenner GG, Terry W, Harada M, Isersky C, Page D (1971) Amyloid fibril proteins: proof of homology with immunoglobulin light chains by sequence analyses. Science 172(3988):1150–1151

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Maurizi N, Rella V, Fumagalli C et al (2020) Prevalence of cardiac amyloidosis among adult patients referred to tertiary centres with an initial diagnosis of hypertrophic cardiomyopathy. Int J Cardiol 300:191–195

    Article  PubMed  Google Scholar 

  5. Ney S, Ihle P, Ruhnke T et al (2023) Epidemiology of cardiac amyloidosis in Germany: a retrospective analysis from 2009 to 2018. Clin Res Cardiol 112(3):401–408

    Article  PubMed  Google Scholar 

  6. Chamling B, Bietenbeck M, Korthals D et al (2023) Therapeutic value of tafamidis in patients with wild-type transthyretin amyloidosis (ATTRwt) with cardiomyopathy based on cardiovascular magnetic resonance (CMR) imaging. Clin Res Cardiol 112(3):353–362

    Article  CAS  PubMed  Google Scholar 

  7. Puntmann VO, Peker E, Chandrashekhar Y, Nagel E (2016) T1 Mapping in characterizing myocardial disease: a comprehensive review. Circ Res 119(2):277–299

    Article  CAS  PubMed  Google Scholar 

  8. Korosoglou G, Giusca S, Gitsioudis G, Erbel C, Katus HA (2014) Cardiac magnetic resonance and computed tomography angiography for clinical imaging of stable coronary artery disease. Diagnostic classification and risk stratification. Front Physiol 5: 291.

  9. Giusca S, Steen H, Montenbruck M et al (2021) Multi-parametric assessment of left ventricular hypertrophy using late gadolinium enhancement, T1 mapping and strain-encoded cardiovascular magnetic resonance. J Cardiovasc Magn Reson 23(1):92

    Article  PubMed  PubMed Central  Google Scholar 

  10. Tang W, McDonald SP, Hawley CM et al (2013) End-stage renal failure due to amyloidosis: outcomes in 490 ANZDATA registry cases. Nephrol Dial Transplant 28(2):455–461

    Article  CAS  PubMed  Google Scholar 

  11. Phelan D, Collier P, Thavendiranathan P et al (2012) Relative apical sparing of longitudinal strain using two-dimensional speckle-tracking echocardiography is both sensitive and specific for the diagnosis of cardiac amyloidosis. Heart 98(19):1442–1448

    Article  PubMed  Google Scholar 

  12. Liu D, Hu K, Niemann M et al (2013) Effect of combined systolic and diastolic functional parameter assessment for differentiation of cardiac amyloidosis from other causes of concentric left ventricular hypertrophy. Circ Cardiovasc Imaging 6(6):1066–1072

    Article  PubMed  Google Scholar 

  13. Maron BJ, Ommen SR, Semsarian C, Spirito P, Olivotto I, Maron MS (2014) Hypertrophic cardiomyopathy: present and future, with translation into contemporary cardiovascular medicine. J Am Coll Cardiol 64(1):83–99

    Article  PubMed  Google Scholar 

  14. Gertz MA, Comenzo R, Falk RH et al (2005) Definition of organ involvement and treatment response in immunoglobulin light chain amyloidosis (AL): a consensus opinion from the 10th International Symposium on Amyloid and Amyloidosis, Tours, France, 18–22 April 2004. Am J Hematol 79(4):319–328

    Article  PubMed  Google Scholar 

  15. Prakken NH, Velthuis BK, Teske AJ, Mosterd A, Mali WP, Cramer MJ (2010) Cardiac MRI reference values for athletes and nonathletes corrected for body surface area, training hours/week and sex. Eur J Cardiovasc Prev Rehabil 17(2):198–203

    Article  PubMed  Google Scholar 

  16. Yilmaz A, Bauersachs J, Bengel F et al (2021) Diagnosis and treatment of cardiac amyloidosis: position statement of the German Cardiac Society (DGK). Clin Res Cardiol 110(4):479–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Messroghli DR, Moon JC, Ferreira VM et al (2017) Clinical recommendations for cardiovascular magnetic resonance mapping of T1, T2, T2* and extracellular volume: a consensus statement by the society for cardiovascular magnetic resonance (SCMR) endorsed by the European association for cardiovascular imaging (EACVI). J Cardiovasc Magn Reson 19(1):75

    Article  PubMed  PubMed Central  Google Scholar 

  18. Cardim N, Galderisi M, Edvardsen T et al (2015) Role of multimodality cardiac imaging in the management of patients with hypertrophic cardiomyopathy: an expert consensus of the European Association of Cardiovascular Imaging Endorsed by the Saudi Heart Association. Eur Heart J Cardiovasc Imaging 16(3):280

    Article  PubMed  Google Scholar 

  19. Giusca S, Korosoglou G, Zieschang V et al (2018) Reproducibility study on myocardial strain assessment using fast-SENC cardiac magnetic resonance imaging. Sci Rep 8(1):14100

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  20. Korosoglou G, Giusca S, Hofmann NP et al (2019) Strain-encoded magnetic resonance: a method for the assessment of myocardial deformation. ESC Heart Fail 6(4):584–602

    Article  PubMed  PubMed Central  Google Scholar 

  21. Steen H, Giusca S, Montenbruck M et al (2021) Left and right ventricular strain using fast strain-encoded cardiovascular magnetic resonance for the diagnostic classification of patients with chronic non-ischemic heart failure due to dilated, hypertrophic cardiomyopathy or cardiac amyloidosis. J Cardiovasc Magn Reson 23(1):45

    Article  PubMed  PubMed Central  Google Scholar 

  22. Korosoglou G, Giusca S, Montenbruck M et al (2021) Fast Strain-Encoded Cardiac Magnetic Resonance for Diagnostic Classification and Risk Stratification of Heart Failure Patients. JACC Cardiovasc Imaging 14(6):1177–1188

    Article  PubMed  Google Scholar 

  23. Cerqueira MD, Weissman NJ, Dilsizian V, et al. (2002) Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the cardiac imaging committee of the council on clinical cardiology of the american heart association. Circulation 105(4): 539–42.

  24. Williams LK, Forero JF, Popovic ZB et al (2017) Patterns of CMR measured longitudinal strain and its association with late gadolinium enhancement in patients with cardiac amyloidosis and its mimics. J Cardiovasc Magn Reson 19(1):61

    Article  PubMed  PubMed Central  Google Scholar 

  25. Bravo PE, Fujikura K, Kijewski MF et al (2019) Relative apical sparing of myocardial longitudinal strain is explained by regional differences in total amyloid mass rather than the proportion of amyloid deposits. JACC Cardiovasc Imaging 12(7 Pt 1):1165–1173

    Article  PubMed  Google Scholar 

  26. Dass S, Suttie JJ, Piechnik SK et al (2012) Myocardial tissue characterization using magnetic resonance noncontrast t1 mapping in hypertrophic and dilated cardiomyopathy. Circ Cardiovasc Imaging 5(6):726–733

    Article  PubMed  Google Scholar 

  27. Hosch W, Bock M, Libicher M et al (2007) MR-relaxometry of myocardial tissue: significant elevation of T1 and T2 relaxation times in cardiac amyloidosis. Invest Radiol 42(9):636–642

    Article  PubMed  Google Scholar 

  28. Fontana M, Banypersad SM, Treibel TA et al (2014) Native T1 mapping in transthyretin amyloidosis. JACC Cardiovasc Imaging 7(2):157–165

    Article  PubMed  Google Scholar 

  29. Lavall D, Vosshage NH, Gessner R et al (2023) Native T1 mapping for the diagnosis of cardiac amyloidosis in patients with left ventricular hypertrophy. Clin Res Cardiol 112(3):334–342

    Article  CAS  PubMed  Google Scholar 

  30. Karamitsos TD, Piechnik SK, Banypersad SM et al (2013) Noncontrast T1 mapping for the diagnosis of cardiac amyloidosis. JACC Cardiovasc Imaging 6(4):488–497

    Article  PubMed  Google Scholar 

  31. Wang TKM, Brizneda MV, Kwon DH et al (2021) Reference ranges, diagnostic and prognostic utility of native T1 mapping and extracellular volume for cardiac amyloidosis: a meta-analysis. J Magn Reson Imaging 53(5):1458–1468

    Article  PubMed  Google Scholar 

  32. Pan JA, Kerwin MJ, Salerno M (2020) Native T1 mapping, extracellular volume mapping, and late gadolinium enhancement in cardiac amyloidosis: a meta-analysis. JACC Cardiovasc Imaging 13(6):1299–1310

    Article  PubMed  PubMed Central  Google Scholar 

  33. Vo HQ, Marwick TH, Negishi K (2020) Pooled summary of native T1 value and extracellular volume with MOLLI variant sequences in normal subjects and patients with cardiovascular disease. Int J Cardiovasc Imaging 36(2):325–336

    Article  PubMed  Google Scholar 

  34. Lehman SJ, Crocini C, Leinwand LA (2022) Targeting the sarcomere in inherited cardiomyopathies. Nat Rev Cardiol 19(6):353–363

    Article  PubMed  PubMed Central  Google Scholar 

  35. de Boer RA, Heymans S, Backs J, et al. (2022) Targeted therapies in genetic dilated and hypertrophic cardiomyopathies: from molecular mechanisms to therapeutic targets. A position paper from the Heart Failure Association (HFA) and the Working Group on Myocardial Function of the European Society of Cardiology (ESC). Eur J Heart Fail 24(3): 406–20.

  36. Maurer MS, Schwartz JH, Gundapaneni B et al (2018) Tafamidis treatment for patients with transthyretin amyloid cardiomyopathy. N Engl J Med 379(11):1007–1016

    Article  CAS  PubMed  Google Scholar 

  37. Antonopoulos AS, Panagiotopoulos I, Kouroutzoglou A et al (2022) Prevalence and clinical outcomes of transthyretin amyloidosis: a systematic review and meta-analysis. Eur J Heart Fail 24(9):1677–1696

    Article  CAS  PubMed  Google Scholar 

  38. Bianchi G, Zhang Y, Comenzo RL (2021) AL amyloidosis: current chemotherapy and immune therapy treatment strategies: JACC: CardioOncology state-of-the-art review. JACC CardioOncol 3(4):467–487

    Article  PubMed  PubMed Central  Google Scholar 

  39. Martens P, Hanna M, Valent J, Estep JD, Tang WHW (2023) Supra-normal left ventricular ejection fraction in cardiac amyloidosis. Clin Res Cardiol 112(3):441–443

    Article  PubMed  Google Scholar 

  40. Wheeler MT, Olivotto I, Elliott PM, et al. Effects of Mavacamten on Measures of Cardiopulmonary Exercise Testing Beyond Peak Oxygen Consumption: A Secondary Analysis of the EXPLORER-HCM Randomized Trial. JAMA Cardiol 2023.

  41. Korthals D, Chatzantonis G, Bietenbeck M, Meier C, Stalling P, Yilmaz A (2021) CMR-based T1-mapping offers superior diagnostic value compared to longitudinal strain-based assessment of relative apical sparing in cardiac amyloidosis. Sci Rep 11(1):15521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Korosoglou G, Giusca S (2020) Strain for stress testing: Is it a featuring or supporting role in cardiac magnetic resonance? JACC Cardiovasc Imaging 13(1 Pt 1):66–68

    Article  PubMed  Google Scholar 

  43. Yue X, Yang L, Wang R et al (2022) The diagnostic value of multiparameter cardiovascular magnetic resonance for early detection of light-chain amyloidosis from hypertrophic cardiomyopathy patients. Front Cardiovasc Med 9:1017097

    Article  PubMed  PubMed Central  Google Scholar 

  44. Korosoglou G, Ochs M (2023) Spotlight on myocardial deformation in hypertrophic cardiomyopathy: Putting the puzzle together? JACC Cardiovasc Imaging 16(4):492–494

    Article  PubMed  Google Scholar 

  45. Amr A, Koelemen J, Reich C, et al. (2023) Improving sudden cardiac death risk stratification in hypertrophic cardiomyopathy using established clinical variables and genetic information. Clin Res Cardiol.

  46. Cheng S, Larson MG, McCabe EL et al (2013) Age- and sex-based reference limits and clinical correlates of myocardial strain and synchrony: the Framingham Heart Study. Circ Cardiovasc Imaging 6(5):692–699

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Birgit Hoerig, Kirsten Falk, Ute Pfeiffer and Silke Morgenstern for their excellent technical assistance with the acquisitions of all CMR scans.

Funding

The work had no external or internal funding.

Author information

Authors and Affiliations

Authors

Contributions

HS and GK designed the study, performed the analysis, and wrote the manuscript. All other authors performed the acquisitions and data analysis, reviewed the manuscript, and provided important intellectual input.

Corresponding author

Correspondence to Grigorios Korosoglou.

Ethics declarations

Conflict of interests

HS, GK and SK received research grants from Myocardial Solutions. SK and HS own stock options of Myocardial Solutions. All other authors declare that they have no competing interests regarding this manuscript.

Ethics approval and consent to participate

The study was approved by Ethics Committee of the University of Hamburg (PV7193). All patients gave written informed consent.

Consent for publication

Not applicable.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Steen, H., Montenbruck, M., Kallifatidis, A. et al. Multi-parametric non-contrast cardiac magnetic resonance for the differentiation between cardiac amyloidosis and hypertrophic cardiomyopathy. Clin Res Cardiol 113, 469–480 (2024). https://doi.org/10.1007/s00392-023-02348-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00392-023-02348-4

Keywords

Navigation