Estimated plasma volume status in heart failure: clinical implications and future directions

Abstract

Congestion is one of the main predictors of poor outcome in patients with heart failure (HF). Assessing and monitoring congestion is essential for optimizing HF therapy. Among the various available methods, serial measurements of estimated plasma volume (ePVS) using routine blood count and/or body weight (e.g., the Strauss, Duarte, Hakim formulas) may be useful in HF management. Further prospective study is warranted to determine whether ePVS can help optimize decongestion therapy (loop diuretics, mineralocorticoid receptor antagonists, SGLT2i) in various HF settings. This narrative review summarizes the recent evidence supporting the association of ePVS with clinical congestion and outcome(s) and discusses future directions for monitoring ePVS in HF.

Graphic abstract

This is a preview of subscription content, access via your institution.

Abbreviations

PV:

Plasma volume

ePVS:

Estimated plasma volume status

HF:

Heart failure

CHF:

Chronic heart failure

AHF:

Acute heart failure

ADHF:

Acutely decompensated heart failure

HFrEF:

Heart failure with reduced ejection fraction

HFpEF:

Heart failure with preserved ejection fraction

HFmrEF:

Heart failure with mid-range ejection fraction

References

  1. 1.

    Rubio-Gracia J, Demissei BG, Ter Maaten JM, Cleland JG, O’Connor CM, Metra M, Ponikowski P, Teerlink JR, Cotter G, Davison BA, Givertz MM, Bloomfield DM, Dittrich H, Damman K, Perez-Calvo JI, Voors AA (2018) Prevalence, predictors and clinical outcome of residual congestion in acute decompensated heart failure. Int J Cardiol 258:185–191

    PubMed  Article  PubMed Central  Google Scholar 

  2. 2.

    Girerd N, Seronde MF, Coiro S, Chouihed T, Bilbault P, Braun F, Kenizou D, Maillier B, Nazeyrollas P, Roul G, Fillieux L, Abraham WT, Januzzi J Jr, Sebbag L, Zannad F, Mebazaa A, Rossignol P (2018) Ini-Crct GN and the EFHFG Integrative assessment of congestion in heart failure throughout the patient journey. JACC Heart Fail 6:273–285

    PubMed  Article  PubMed Central  Google Scholar 

  3. 3.

    Yancy CW, Jessup M, Bozkurt B, Masoudi FA, Butler J, McBride PE, Casey DE Jr, McMurray JJ, Drazner MH, Mitchell JE, Fonarow GC, Peterson PN, Geraci SA, Horwich T, Januzzi JL, Johnson MR, Kasper EK, Levy WC, Riegel B, Sam F, Stevenson LW, Tang WH, Tsai EJ, Wilkoff BL (2013) 2013 ACCF/AHA guideline for the management of heart failure: a report of the American college of cardiology foundation/American heart association task force on practice guidelines. J Am Coll Cardiol 62:e147–e239

    PubMed  Article  PubMed Central  Google Scholar 

  4. 4.

    Miller WL (2016) Fluid volume overload and congestion in heart failure: time to reconsider pathophysiology and how volume is assessed. Circ Heart Fail 9:e002922

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  5. 5.

    Francis GS, Benedict C, Johnstone DE, Kirlin PC, Nicklas J, Liang CS, Kubo SH, Rudin-Toretsky E, Yusuf S (1990) Comparison of neuroendocrine activation in patients with left ventricular dysfunction with and without congestive heart failure, A substudy of the studies of left ventricular dysfunction (SOLVD). Circulation 82:1724–1729

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  6. 6.

    Kalra PR, Anagnostopoulos C, Bolger AP, Coats AJS, Anker SD (2002) The regulation and measurement of plasma volume in heart failure. J Am Coll Cardiol 39:1901–1908

    PubMed  Article  PubMed Central  Google Scholar 

  7. 7.

    Nijst P, Verbrugge FH, Bertrand PB, Martens P, Dupont M, Drieskens O, Penders J, Tang WH, Mullens W (2017) Plasma volume is normal but heterogeneously distributed, and true anemia is highly prevalent in patients with stable heart failure. J Card Fail 23:138–144

    PubMed  Article  PubMed Central  Google Scholar 

  8. 8.

    Kaplan E, Puestow RC, Baker LA, Kruger S (1954) Blood volume in congestive heart failure as determined with iodinated human serum albumin. Am Heart J 47:824–838

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  9. 9.

    Fudim M, Hernandez AF, Felker GM (2017) Role of volume redistribution in the congestion of heart failure. J Am Heart Assoc 6:e006817

    PubMed  PubMed Central  Article  Google Scholar 

  10. 10.

    Miller WL, Mullan BP (2014) Understanding the heterogeneity in volume overload and fluid distribution in decompensated heart failure is key to optimal volume management: role for blood volume quantitation. JACC Heart Fail 2:298–305

    PubMed  Article  PubMed Central  Google Scholar 

  11. 11.

    Marenzi G, Lauri G, Grazi M, Assanelli E, Campodonico J, Agostoni P (2001) Circulatory response to fluid overload removal by extracorporeal ultrafiltration in refractory congestive heart failure. J Am Coll Cardiol 38:963–968

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  12. 12.

    Testani JM, Chen J, McCauley BD, Kimmel SE, Shannon RP (2010) Potential effects of aggressive decongestion during the treatment of decompensated heart failure on renal function and survival. Circulation 122:265–272

    PubMed  PubMed Central  Article  Google Scholar 

  13. 13.

    Greene SJ, Gheorghiade M, Vaduganathan M, Ambrosy AP, Mentz RJ, Subacius H, Maggioni AP, Nodari S, Konstam MA, Butler J, Filippatos G, and investigators ET (2013) Haemoconcentration, renal function, and post-discharge outcomes among patients hospitalized for heart failure with reduced ejection fraction: insights from the EVEREST trial. Eur J Heart Fail 15:1401–1411

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  14. 14.

    van der Meer P, Postmus D, Ponikowski P, Cleland JG, O’Connor CM, Cotter G, Metra M, Davison BA, Givertz MM, Mansoor GA, Teerlink JR, Massie BM, Hillege HL, Voors AA (2013) The predictive value of short-term changes in hemoglobin concentration in patients presenting with acute decompensated heart failure. J Am Coll Cardiol 61:1973–1981

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  15. 15.

    Pellicori P, Shah P, Cuthbert J, Urbinati A, Zhang J, Kallvikbacka-Bennett A, Clark AL, Cleland JGF (2019) Prevalence, pattern and clinical relevance of ultrasound indices of congestion in outpatients with heart failure. Eur J Heart Fail 21:904–916

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  16. 16.

    Montero D, Lundby C, Ruschitzka F, Flammer AJ (2017) True anemia-red blood cell volume deficit-in heart failure: a systematic review. Circ Heart Fail 10(5):e003610

    PubMed  Article  PubMed Central  Google Scholar 

  17. 17.

    Androne AS, Hryniewicz K, Hudaihed A, Mancini D, Lamanca J, Katz SD (2004) Relation of unrecognized hypervolemia in chronic heart failure to clinical status, hemodynamics, and patient outcomes. Am J Cardiol 93:1254–1259

    PubMed  Article  PubMed Central  Google Scholar 

  18. 18.

    Strobeck JE, Feldschuh J, Miller WL (2018) Heart failure outcomes with volume-guided management. JACC Heart Fail 6:940–948

    PubMed  Article  PubMed Central  Google Scholar 

  19. 19.

    Strauss MB, Davis RK, Rosenbaum JD, Rossmeisl EC (1951) Water diuresis produced during recumbency by the intravenous infusion of isotonic saline solution. J Clin Invest 30:862–868

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. 20.

    Dill DB, Costill DL (1974) Calculation of percentage changes in volumes of blood, plasma, and red cells in dehydration. J Appl Physiol 37:247–248

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  21. 21.

    Buffaloe GW, Heineken FG (1983) Plasma volume nomograms for use in therapeutic plasma exchange. Transfusion 23:355–357

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  22. 22.

    Sprenger KB, Huber K, Kratz W, Henze E (1987) Nomograms for the prediction of patient’s plasma volume in plasma exchange therapy from height, weight, and hematocrit. J Clin Apher 3:185–190

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  23. 23.

    Duarte K, Monnez JM, Albuisson E, Pitt B, Zannad F, Rossignol P (2015) Prognostic Value of Estimated Plasma Volume in Heart Failure. JACC Heart Fail 3:886–893

    PubMed  Article  PubMed Central  Google Scholar 

  24. 24.

    RM. H. Plasmapheresis. In: I. D. JT, B. PG and I. TS, eds (2001). Handbook of dialysis, 3rd ed Philadelphia: Lippincott. Williams and Wilkins 236

  25. 25.

    Rossignol P, Masson S, Barlera S, Girerd N, Castelnovo A, Zannad F, Clemenza F, Tognoni G, Anand IS, Cohn JN, Anker SD, Tavazzi L, Latini R, on the behalf of G-H and Val-He FTI, (2015) Loss in body weight is an independent prognostic factor for mortality in chronic heart failure: insights from the GISSI-HF and Val-HeFT trials. Eur J Heart Fail 17(4):424–433

  26. 26.

    Martens P, Nijst P, Dupont M, Mullens W (2019) The optimal plasma volume status in heart failure in relation to clinical outcome. J Cardiac Failure 25(4):240–248

    Article  Google Scholar 

  27. 27.

    Dworkin HJ, Premo M, Dees S (2007) Comparison of red cell and whole blood volume as performed using both chromium-51-tagged red cells and iodine-125-tagged albumin and using I-131-tagged albumin and extrapolated red cell volume. Am J Med Sci 334:37–40

    PubMed  Article  PubMed Central  Google Scholar 

  28. 28.

    International Committee for Standardization in Haematology (1980) Recommended methods for measurement of red-cell and plasma volume: international committee for standardization in haematology. J Nuclear Med Off Publ Soc Nuclear Med 21:793–800

    Google Scholar 

  29. 29.

    Molitoris BA, George AG, Murray PT, Meier D, Reilly ES, Barreto E, Sandoval RM, Rizk DV, Shaw AD, Peacock WF (2019) A novel fluorescent clinical method to rapidly quantify plasma volume. Cardiorenal Med 9:168–179

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. 30.

    Ling HZ, Flint J, Damgaard M, Bonfils PK, Cheng AS, Aggarwal S, Velmurugan S, Mendonca M, Rashid M, Kang S, Papalia F, Weissert S, Coats CJ, Thomas M, Kuskowski M, Cohn JN, Woldman S, Anand IS, Okonko DO (2015) Calculated plasma volume status and prognosis in chronic heart failure. Eur J Heart Fail 17:35–43

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  31. 31.

    Fudim M, Miller WL (2018) Calculated estimates of plasma volume in patients with chronic heart failure-comparison with measured volumes. J Cardiac Failure 24(9):553–560

    Article  Google Scholar 

  32. 32.

    Dekkers CCJ, Sjostrom CD, Greasley PJ, Cain V, Boulton DW, Heerspink HJL (2019) Effects of the sodium-glucose co-transporter-2 inhibitor dapagliflozin on estimated plasma volume in patients with type 2 diabetes. Diabet Obesity Metab 21(12):2667–2673

    CAS  Article  Google Scholar 

  33. 33.

    Yoshihisa A, Abe S, Sato Y, Watanabe S, Yokokawa T, Miura S, Misaka T, Sato T, Suzuki S, Oikawa M, Kobayashi A, Yamaki T, Kunii H, Saitoh SI, Takeishi Y (2018) Plasma volume status predicts prognosis in patients with acute heart failure syndromes. Eur Heart J Acute Cardiovasc Care 7(4):330–338

    PubMed  Article  PubMed Central  Google Scholar 

  34. 34.

    Kataoka H (2017) Vascular expansion during worsening of heart failure: Effects on clinical features and its determinants. Int J Cardiol 230:556–561

    PubMed  Article  PubMed Central  Google Scholar 

  35. 35.

    Grodin JL, Philips S, Mullens W, Nijst P, Martens P, Fang JC, Drazner MH, Tang WHW, Pandey A (2019) Prognostic implications of plasma volume status estimates in heart failure with preserved ejection fraction: insights from TOPCAT. Eur J Heart Fail 21(5):634–642

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  36. 36.

    Kobayashi M, Huttin O, Donal E, Duarte K, Hubert A, Le Breton H, Galli E, Fournet M, Mabo P, Schnell F, Leclercq C, Rossignol P, Girerd N (2020) Association of estimated plasma volume status with hemodynamic and echocardiographic parameters. Clin Res Cardiol 109(8):1060–1069

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  37. 37.

    Almufleh A, Desai AS, Fay R, Ferreira JP, Buckley LF, Mehra MR, Rossignol P, Zannad F (2020) Correlation of laboratory haemoconcentration measures with filling pressures obtained via pulmonary arterial pressure sensors in ambulatory heart failure patients. Eur J Heart Fail 22(10):1907–1911

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  38. 38.

    Hayasaka K, Matsue Y, Kitai T, Okumura T, Kida K, Oishi S, Akiyama E, Suzuki S, Yamamoto M, Mizukami A, Yoshioka K, Kuroda S, Kagiyama N, Yamaguchi T and Sasano T (2020) Tricuspid regurgitation pressure gradient identifies prognostically relevant worsening renal function in acute heart failure. Eur Heart J Cardiovasc Imag

  39. 39.

    Rossignol P, Menard J, Fay R, Gustafsson F, Pitt B, Zannad F (2011) Eplerenone survival benefits in heart failure patients post-myocardial infarction are independent from its diuretic and potassium-sparing effects. Insights from an EPHESUS (Eplerenone Post-Acute Myocardial Infarction Heart Failure Efficacy and Survival Study) substudy. J Am Coll Cardiol 58:1958–1966

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  40. 40.

    Hamilton RW, Buckalew VM Jr (1984) Sodium, water, and congestive heart failure. Ann Intern Med 100:902–904

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  41. 41.

    Ghali JK, Tam SW (2010) The critical link of hypervolemia and hyponatremia in heart failure and the potential role of arginine vasopressin antagonists. J Card Fail 16:419–431

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  42. 42.

    Miller WL, Mullan BP (2016) Volume overload profiles in patients with preserved and reduced ejection fraction chronic heart failure: are there differences? A pilot study. JACC Heart Fail 4:453–459

    PubMed  Article  PubMed Central  Google Scholar 

  43. 43.

    Takei M, Kohsaka S, Shiraishi Y, Goda A, Izumi Y, Yagawa M, Mizuno A, Sawano M, Inohara T, Kohno T, Fukuda K, Yoshikawa T, West Tokyo Heart Failure Registry I (2015) Effect of estimated plasma volume reduction on renal function for acute heart failure differs between patients with preserved and reduced ejection fraction. Circulat Heart Failure 8:527–532

    Article  Google Scholar 

  44. 44.

    Kobayashi M, Rossignol P, Ferreira JP, Aragao I, Paku Y, Iwasaki Y, Watanabe M, Fudim M, Duarte K, Zannad F, Girerd N (2019) Prognostic value of estimated plasma volume in acute heart failure in three cohort studies. Clin Res Cardiol 108(5):549–561

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  45. 45.

    Kobayashi M, Girerd N, Duarte K, Preud'homme G, Pitt B, Rossignol P (2020) Prognostic Impact of Plasma Volume Estimated from Hemoglobin and Hematocrit in Heart Failure with Preserved Ejection Fraction. Clin Res Cardiol. 109(11):1392–1401

    PubMed  Article  PubMed Central  Google Scholar 

  46. 46.

    Ergatoudes C, Schaufelberger M, Andersson B, Pivodic A, Dahlström U, Fu M (2019) Non-cardiac comorbidities and mortality in patients with heart failure with reduced vs. preserved ejection fraction: a study using the Swedish Heart Failure Registry. Clin Res Cardiol 108:1025–1033

    PubMed  PubMed Central  Article  Google Scholar 

  47. 47.

    Streng KW, Nauta JF, Hillege HL, Anker SD, Cleland JG, Dickstein K, Filippatos G, Lang CC, Metra M, Ng LL, Ponikowski P, Samani NJ, van Veldhuisen DJ, Zwinderman AH, Zannad F, Damman K, van der Meer P, Voors AA (2018) Non-cardiac comorbidities in heart failure with reduced, mid-range and preserved ejection fraction. Int J Cardiol 271:132–139

    PubMed  Article  PubMed Central  Google Scholar 

  48. 48.

    Rossignol P, Masson S, Barlera S, Girerd N, Castelnovo A, Zannad F, Clemenza F, Tognoni G, Anand IS, Cohn JN, Anker SD, Tavazzi L, Latini R, Gissi HF, Val-He FTI (2015) Loss in body weight is an independent prognostic factor for mortality in chronic heart failure: insights from the GISSI-HF and Val-HeFT trials. Eur J Heart Fail 17:424–433

    PubMed  Article  PubMed Central  Google Scholar 

  49. 49.

    Huang CY, Lin TT, Wu YF, Chiang FT, Wu CK (2019) Long-term prognostic value of estimated plasma volume in heart failure with preserved ejection fraction. Sci Rep 9:14369

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  50. 50.

    Balderston JR, Shah KB, Paciulli SC, Gertz ZM (2018) Usefulness of estimated plasma volume at postdischarge follow-up to predict recurrent events in patients with heart failure. Am J Cardiol 122:1191–1194

    PubMed  Article  PubMed Central  Google Scholar 

  51. 51.

    Hudson SR, Chan D, Ng LL (2016) Change in plasma volume and prognosis in acute decompensated heart failure: an observational cohort study. J R Soc Med 109:337–346

    PubMed  PubMed Central  Article  Google Scholar 

  52. 52.

    Bilchick KC, Chishinga N, Parker AM, Zhuo DX, Rosner MH, Smith LA, Mwansa H, Blackwell JN, McCullough PA, Mazimba S (2017) Plasma volume and renal function predict six-month survival after hospitalization for acute decompensated heart failure. Cardiorenal Med 8:61–70

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  53. 53.

    Kobayashi M, Bercker M, Huttin O, Pierre S, Sadoul N, Bozec E, Chouihed T, Ferreira JP, Zannad F, Rossignol P, Girerd N (2020) Chest X-ray quantification of admission lung congestion as a prognostic factor in patients admitted for worsening heart failure from the ICALOR cohort study. Int J Cardiol 299:192–198

    PubMed  Article  PubMed Central  Google Scholar 

  54. 54.

    Fudim M, Lerman JB, Page C, Alhanti B, Califf RM, Ezekowitz JA, Girerd N, Grodin JL, Miller WL, Pandey A, Rossignol P, Starling RC, Tang WHW, Zannad F, Hernandez AF, O'Connor CM and Mentz RJ (2020) Plasma volume status and its association with in-hospital and post-discharge outcomes in decompensated heart failure. J Card Fail

  55. 55.

    Maznyczka AM, Barakat MF, Ussen B, Kaura A, Abu-Own H, Jouhra F, Jaumdally H, Amin-Youssef G, Nicou N, Baghai M, Deshpande R, Wendler O, Kolvekar S, Okonko DO (2019) Calculated plasma volume status and outcomes in patients undergoing coronary bypass graft surgery. Heart 105:1020–1026

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  56. 56.

    Adlbrecht C, Piringer F, Resar J, Watzal V, Andreas M, Strouhal A, Hasan W, Geisler D, Weiss G, Grabenwöger M, Delle-Karth G, Mach M (2020) The impact of subclinical congestion on the outcome of patients undergoing transcatheter aortic valve implantation. Eur J Clin Invest 50:e13251

    PubMed Central  Article  Google Scholar 

  57. 57.

    Schaefer AK, Poschner T, Andreas M, Kocher A, Laufer G, Wiedemann D, Mach M (2020) Impact of subclinical congestion on outcome of patients undergoing mitral valve surgery. Biomedicines 8(9):363

    PubMed Central  Article  Google Scholar 

  58. 58.

    Chouihed T, Rossignol P, Bassand A, Duarte K, Kobayashi M, Jaeger D, Sadoune S, Buessler A, Nace L, Giacomin G, Hutter T, Barbe F, Salignac S, Jay N, Zannad F, Girerd N (2019) Diagnostic and prognostic value of plasma volume status at emergency department admission in dyspneic patients: results from the PARADISE cohort. Clin Res Cardiol 108(5):563–573

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  59. 59.

    Testani JM, Brisco MA, Chen J, McCauley BD, Parikh CR, Tang WH (2013) Timing of hemoconcentration during treatment of acute decompensated heart failure and subsequent survival: importance of sustained decongestion. J Am Coll Cardiol 62:516–524

    PubMed  PubMed Central  Article  Google Scholar 

  60. 60.

    Parrinello G, Greene SJ, Torres D, Alderman M, Bonventre JV, Di Pasquale P, Gargani L, Nohria A, Fonarow GC, Vaduganathan M, Butler J, Paterna S, Stevenson LW, Gheorghiade M (2015) Water and sodium in heart failure: a spotlight on congestion. Heart Fail Rev 20:13–24

    PubMed  PubMed Central  Article  Google Scholar 

  61. 61.

    Davila C, Reyentovich A, Katz SD (2011) Clinical correlates of hemoconcentration during hospitalization for acute decompensated heart failure. J Card Fail 17:1018–1022

    PubMed  Article  PubMed Central  Google Scholar 

  62. 62.

    Darawsha W, Chirmicci S, Solomonica A, Wattad M, Kaplan M, Makhoul BF, Abassi ZA, Azzam ZS, Aronson D (2016) Discordance between hemoconcentration and clinical assessment of decongestion in acute heart failure. J Card Fail 22:680–688

    PubMed  Article  PubMed Central  Google Scholar 

  63. 63.

    Rao VS, Ahmad T, Brisco-Bacik MA, Bonventre JV, Wilson FP, Siew ED, Felker GM, Anstrom KK, Mahoney DD, Bart BA, Tang WHW, Velazquez EJ, Testani JM (2019) Renal effects of intensive volume removal in heart failure patients with preexisting worsening renal function. Circ Heart Fail 12:e005552

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  64. 64.

    Ferreira JP, Chouihed T, Nazeyrollas P, Levy B, Seronde MF, Bilbault P, Braun F, Roul G, Kenizou D, Zannad N, Girerd N, Rossignol P (2018) Practical management of concomitant acute heart failure and worsening renal function in the emergency department. Eur J Emerg Med Off J Eur Soc Emerg Med 25:229–236

    Article  Google Scholar 

  65. 65.

    Metra M, Davison B, Bettari L, Sun H, Edwards C, Lazzarini V, Piovanelli B, Carubelli V, Bugatti S, Lombardi C, Cotter G, Dei CL (2012) Is worsening renal function an ominous prognostic sign in patients with acute heart failure? The role of congestion and its interaction with renal function. Circ Heart Fail 5:54–62

    PubMed  Article  PubMed Central  Google Scholar 

  66. 66.

    Damman K, Tang WH, Testani JM, McMurray JJ (2014) Terminology and definition of changes renal function in heart failure. Eur Heart J 35:3413–3416

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  67. 67.

    Zannad F, Rossignol P (2018) Cardiorenal syndrome revisited. Circulation 138:929–944

    PubMed  Article  PubMed Central  Google Scholar 

  68. 68.

    Davison BA, Metra M, Cotter G, Massie BM, Cleland JGF, Dittrich HC, Edwards C, Filippatos G, Givertz MM, Greenberg B, Ponikowski P, Voors AA, O’Connor CM, Teerlink JR (2015) Worsening heart failure following admission for acute heart failure: a pooled analysis of the PROTECT and RELAX-AHF studies. JACC Heart Fail 3:395–403

    PubMed  Article  PubMed Central  Google Scholar 

  69. 69.

    Davidov M, Kakaviatos N, Finnerty FA Jr (1967) Intravenous administration of furosemide in heart failure. JAMA 200:824–829

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  70. 70.

    Guazzi MD, Agostoni P, Perego B, Lauri G, Salvioni A, Giraldi F, Matturri M, Guazzi M, Marenzi G (1994) Apparent paradox of neurohumoral axis inhibition after body fluid volume depletion in patients with chronic congestive heart failure and water retention. British heart journal 72:534–539

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  71. 71.

    Boyle A, Sobotka PA (2006) Redefining the therapeutic objective in decompensated heart failure: hemoconcentration as a surrogate for plasma refill rate. J Card Fail 12:247–249

    PubMed  Article  PubMed Central  Google Scholar 

  72. 72.

    Packer M, Kitzman DW (2018) Obesity-related heart failure with a preserved ejection fraction: the mechanistic rationale for combining inhibitors of aldosterone, neprilysin, and sodium-glucose cotransporter-2. JACC Heart Failure 6:633–639

    PubMed  Article  PubMed Central  Google Scholar 

  73. 73.

    Nakagawa H, Oberwinkler H, Nikolaev VO, Gaßner B, Umbenhauer S, Wagner H, Saito Y, Baba HA, Frantz S, Kuhn M (2014) Atrial natriuretic peptide locally counteracts the deleterious effects of cardiomyocyte mineralocorticoid receptor activation. Circ Heart Failure 7:814–821

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  74. 74.

    McMurray JJV, Solomon SD, Inzucchi SE, Kober L, Kosiborod MN, Martinez FA et al (2019) Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med 381(21):1995–2008

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  75. 75.

    Rossignol P, Hernandez AF, Solomon SD, Zannad F (2019) Heart failure drug treatment. Lancet 393:1034–1044

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  76. 76.

    Lambers Heerspink HJ, de Zeeuw D, Wie L, Leslie B, List J (2013) Dapagliflozin a glucose-regulating drug with diuretic properties in subjects with type 2 diabetes. Diabetes Obes Metab 15:853–862

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  77. 77.

    McMurray JJV, Solomon SD, Inzucchi SE, Køber L, Kosiborod MN, Martinez FA, Ponikowski P, Sabatine MS, Anand IS, Bělohlávek J, Böhm M, Chiang CE, Chopra VK, de Boer RA, Desai AS, Diez M, Drozdz J, Dukát A, Ge J, Howlett JG, Katova T, Kitakaze M, Ljungman CEA, Merkely B, Nicolau JC, O’Meara E, Petrie MC, Vinh PN, Schou M, Tereshchenko S, Verma S, Held C, DeMets DL, Docherty KF, Jhund PS, Bengtsson O, Sjöstrand M, Langkilde AM (2019) Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med 381:1995–2008

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  78. 78.

    Sano M, Goto S (2019) Possible mechanism of hematocrit elevation by sodium glucose cotransporter 2 inhibitors and associated beneficial renal and cardiovascular effects. Circulation 139:1985–1987

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  79. 79.

    Heerspink HJL, Kosiborod M, Inzucchi SE, Cherney DZI (2018) Renoprotective effects of sodium-glucose cotransporter-2 inhibitors. Kidney Int 94:26–39

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  80. 80.

    Tang WHW, Telukuntla KS, Mayuga KA (2018) Can Blood Volume Analysis-Guided Acute Heart Failure Therapy Improve Clinical Outcomes? JACC Heart Fail 6:949–950

    PubMed  Article  PubMed Central  Google Scholar 

  81. 81.

    Abraham WT, Adamson PB, Bourge RC, Aaron MF, Costanzo MR, Stevenson LW, Strickland W, Neelagaru S, Raval N, Krueger S, Weiner S, Shavelle D, Jeffries B, Yadav JS (2011) Wireless pulmonary artery haemodynamic monitoring in chronic heart failure: a randomised controlled trial. Lancet 377:658–666

    PubMed  Article  PubMed Central  Google Scholar 

  82. 82.

    Vaduganathan M, Greene SJ, Fonarow GC, Voors AA, Butler J, Gheorghiade M (2014) Hemoconcentration-guided diuresis in heart failure. Am J Med 127:1154–1159

    PubMed  Article  PubMed Central  Google Scholar 

  83. 83.

    Rossignol P, Fay R, Girerd N, Zannad F (2020) Daily home monitoring of potassium, creatinine, and estimated plasma volume in heart failure post-discharge. ESC Heart Failure 7:1257–1263

    PubMed  PubMed Central  Article  Google Scholar 

  84. 84.

    Okonko DO, Jouhra F, Abu-Own H, Filippatos G, Colet JC, Suki C, Mori C, Ponikowski P, Anker SD (2019) Effect of ferric carboxymaltose on calculated plasma volume status and clinical congestion: a FAIR-HF substudy. ESC Heart Fail 6:621–628

    PubMed  PubMed Central  Article  Google Scholar 

  85. 85.

    Massari F, Scicchitano P, Iacoviello M, Passantino A, Guida P, Sanasi M, Piscopo A, Romito R, Valle R, Caldarola P, Ciccone MM (2019) Multiparametric approach to congestion for predicting long-term survival in heart failure. J Cardiol 75(1):47–52

    PubMed  Article  PubMed Central  Google Scholar 

  86. 86.

    Tamaki S, Yamada T, Morita T, Furukawa Y, Iwasaki Y, Kawasaki M, Kikuchi A, Kawai T, Seo M, Abe M, Nakamura J, Yamamoto K, Kayama K, Kawahira M, Tanabe K, Ueda K, Kimura T, Sakamoto D, Fukunami M (2019) Prognostic value of calculated plasma volume status in patients admitted for acute decompensated heart failure: a prospective comparative study with other indices of plasma volume. Circ Rep 1:361–371

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Patrick Rossignol.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 51 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kobayashi, M., Girerd, N., Duarte, K. et al. Estimated plasma volume status in heart failure: clinical implications and future directions. Clin Res Cardiol (2021). https://doi.org/10.1007/s00392-020-01794-8

Download citation

Keywords

  • Plasma volume
  • Congestion
  • Hemoglobin
  • Hematocrit
  • Heart failure