New technologies for intensive prevention programs after myocardial infarction: rationale and design of the NET-IPP trial

Abstract

Introduction

Current health care data reveal suboptimal prevention in patients with coronary artery disease and an unmet need to develop effective preventive strategies. The New Technologies for Intensive Prevention Programs (NET-IPP) Trial will investigate if a long-term web-based prevention program after myocardial infarction (MI) will reduce clinical events and risk factors. In a genetic sub study the impact of disclosure of genetic risk using polygenic risk scores (PRS) will be assessed.

Study design

Patients hospitalized for MI will be prospectively enrolled and assigned to either a 12-months web-based intensive prevention program or standard care. The web-based program will include telemetric transmission of risk factor data, e-learning and electronic contacts between a prevention assistant and the patients. The combined primary study endpoint will comprise severe adverse cardiovascular events after 2 years. Secondary endpoints will be risk factor control, adherence to medication and quality of life. In a genetic sub study genetic risk will be assessed in all patients of the web-based intensive prevention program group by PRS and patients will be randomly assigned to genetic risk disclosure vs. no disclosure. The study question will be if disclosure of genetic risk has an impact on patient motivation and cardiovascular risk factor control.

Conclusions

The randomized multicenter NET-IPP study will evaluate for the first time the effects of a long-term web-based prevention program after MI on clinical events and risk factor control. In a genetic sub study the impact of disclosure of genetic risk using PRS will be investigated.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. 1.

    Chow CK, Jolly S, Rao-Melacini P et al (2010) Association of diet, exercise, and smoking modification with risk of early cardiovascular events after acute coronary syndromes. Circulation 121:750–758

    Article  Google Scholar 

  2. 2.

    Maron DJ, Mancini GBJ, Hartigan PM et al (2018) Healthy behavior, risk factor control, and survival in the COURAGE trial. J Am Coll Cardiol 72:2297–2305

    Article  Google Scholar 

  3. 3.

    Piepoli MF, Hoes A, Agewall S et al (2016) 2016 European guidelines on cardiovascular disease prevention in clinical practice. Eur Heart J 37:2315–2381

    Article  Google Scholar 

  4. 4.

    Ek A, Ekblom O, Hambraeus K, Cider A, Kallings LV, Borjesson M (2019) Physical inactivity and smoking after myocardial infarction as predictors for readmission and survival: results from the SWEDEHEART-registry. Clin Res Cardiol 108:324–332

    Article  Google Scholar 

  5. 5.

    Chau K, Girerd N, Magnusson M et al (2018) Obesity and metabolic features associated with long-term developing diastolic dysfunction in an initially healthy population-based cohort. Clin Res Cardiol 107:887–896

    Article  Google Scholar 

  6. 6.

    Shah ND, Dunlay SM, Ting HH et al (2009) Long-term medication adherence after myocardial infarction: experience of a community. Am J Med 122(961):e7–e13

    Google Scholar 

  7. 7.

    Mangiapane S, Busse R (2011) Prescription prevalence and continuing medication use for secondary prevention after myocardial infarction: the reality of care revealed by claims data analysis. Dtsch Arztebl Int 108:856–862

    PubMed  PubMed Central  Google Scholar 

  8. 8.

    Kotseva K (2017) The EUROASPIRE surveys: lessons learned in cardiovascular disease prevention. Cardiovasc Diagn Ther 7:633–639

    Article  Google Scholar 

  9. 9.

    Kotseva K, De Backer G, De Bacquer D et al (2019) Lifestyle and impact on cardio-vascular risk factor control in coronary patients across 27 countries: results from the European Society of Cardiology ESC-EORP EUROASPIRE V registry. Eur J Prev Cardiol 26:824–835

    Article  Google Scholar 

  10. 10.

    Fach A, Osteresch R, Erdmann J et al (2019) Long-term prevention after myocardial infarction in young patients ≤ 45 years: the Intensive Prevention Program in the Young (IPP-Y) study. Eur J Prev Cardiol. https://doi.org/10.1177/2047487319883960

    Article  PubMed  Google Scholar 

  11. 11.

    Wienbergen H, Fach A, Meyer S et al (2019) Effects of an intensive long-term prevention programme after myocardial infarction - a randomized trial. Eur J Prev Cardiol 26:522–530

    Article  Google Scholar 

  12. 12.

    Osteresch R, Fach A, Schmucker J et al (2019) Long-term risk factor control after myocardial infarction-a need for better prevention programmes. J Clin Med 8:1114

    CAS  Article  Google Scholar 

  13. 13.

    Devi R, Singh SJ, Powell J et al (2015) Internet-based interventions for the secondary prevention of coronary heart disease. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD009386.pub2

    Article  PubMed  Google Scholar 

  14. 14.

    Mega JL, Stitziel NO, Smith JG et al (2015) Genetic risk, coronary heart disease events, and the clinical benefit of statin therapy: an analysis of primary and secondary prevention trials. Lancet 385:2264–2271

    CAS  Article  Google Scholar 

  15. 15.

    Kullo IJ, Jouni H, Austin EE et al (2016) Incorporating a genetic risk score into coronary heart disease risk estimates: effect on low-density lipoprotein cholesterol levels (the MI-GENES Clinical Trial). Circulation 133:1181–1188

    Article  Google Scholar 

  16. 16.

    Khera AV, Emdin CA, Drake I et al (2016) Genetic risk, adherence to a healthy lifestyle, and coronary disease. N Engl J Med 375:2349–2358

    CAS  Article  Google Scholar 

  17. 17.

    Schunkert H, von Scheidt M, Kessler T, Stiller B, Zeng L, Vilne B (2018) Genetics of coronary artery disease in the light of genome-wide association studies. Clin Res Cardiol 107(Suppl 2):2–9

    Article  Google Scholar 

  18. 18.

    Nikpay M, Goel A, Won HH et al (2015) A comprehensive 1,000 Genomes-based genome-wide association meta-analysis of coronary artery disease. Nat Genet 47:1121–1130

    CAS  Article  Google Scholar 

  19. 19.

    Genomes Project Consortium (2015) A global reference for human genetic variation. Nature 526:68–74

    Article  Google Scholar 

  20. 20.

    McCarthy S, Das S, Kretzschmar W et al (2016) A reference panel of 64,976 haplotypes for genotype imputation. Nat Genet 48:1279–1283

    CAS  Article  Google Scholar 

  21. 21.

    Erdmann J, Kessler T, Munoz Venegas L, Schunkert H (2018) A decade of genome-wide association studies for coronary artery disease: the challenges ahead. Cardiovasc Res 114:1241–1257

    CAS  PubMed  Google Scholar 

  22. 22.

    Hansson L, Hedner T, Dahlöf B (1992) Prospective randomized open blinded end-point (PROBE) study. A novel design for intervention trials. Prospective randomized open blinded end-point. Blood Press 1:113–119

    CAS  Article  Google Scholar 

  23. 23.

    Kang M, Ragan BG, Park JH (2008) Issues in outcomes research: an overview of randomization techniques for clinical trials. J Athl Train 43:215–221

    Article  Google Scholar 

  24. 24.

    Hambrecht R, Walther C, Moebius-Winkler S et al (2004) Percutaneous coronary angioplasty compared with exercise training in patients with stable coronary artery disease: a randomized trial. Circulation 109:1371–1378

    Article  Google Scholar 

  25. 25.

    Cholesterol Treatment Trialists’ Collaboration (2010) Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170,000 participants in 26 randomised trials. Lancet 376:1670–1681

    Article  Google Scholar 

  26. 26.

    Giannuzzi P, Temporelli PL, Marchiolo R et al (2008) Global secondary prevention strategies to limit event recurrence after myocardial infarction: results of the GOSPEL study, a multicenter, randomized controlled trial from the Italian Cardiac Rehabilitation Network. Arch Intern Med 168:2194–2204

    Article  Google Scholar 

  27. 27.

    Wood DA, Kotseva K, Connolly S et al (2008) Nurse-coordinated multidisciplinary, family-based cardiovascular disease prevention programme (EUROACTION) for patients with coronary heart disease and asymptomatic individuals at high risk of cardiovascular disease: a paired, cluster-randomised controlled trial. Lancet 371:1999–2012

    CAS  Article  Google Scholar 

  28. 28.

    Mayer-Berger W, Simic D, Mahmoodzad J et al (2014) Efficacy of a long-term secondary prevention programme following inpatient cardiovascular rehabilitation on risk and health-related quality of life in a low-education cohort: a randomized controlled study. Eur J Prev Cardiol 21:145–152

    Article  Google Scholar 

  29. 29.

    Minneboo M, Lachman S, Santerse M et al (2017) Community-based lifestyle intervention in patients with coronary artery disease: the RESPONSE-2 trial. J Am Coll Cardiol 70:318–327

    Article  Google Scholar 

  30. 30.

    Sunamura M, Ter Hoeve N, van den Berg-Emons RJG et al (2018) Randomised con-trolled trial of two advanced and extended cardiac rehabilitation programmes. Heart 104:430–437

    CAS  Article  Google Scholar 

  31. 31.

    Thygesen K, Alpert JS, Jaffe AS et al (2018) Fourth universal definition of myocardial infarction (2018). Circulation 138:e618–e651

    Article  Google Scholar 

  32. 32.

    Roffi M, Patrono C, Collet JP et al (2016) 2015 ESC guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Eur Heart J 37:267–315

    CAS  Article  Google Scholar 

  33. 33.

    Ibanez B, James S, Agewall S et al (2018) 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation. Eur Heart J 39:119–177

    Article  Google Scholar 

  34. 34.

    Tardif JC, Kouz S, Waters DD et al (2019) Efficacy and safety of low-dose colchicine after myocardial infarction. N Engl J Med 381:2497–2505

    CAS  Article  Google Scholar 

  35. 35.

    Newcombe RG (1998) Interval estimation for the difference between independent proportions: comparison of eleven methods. Stat Med 17:873–890

    CAS  Article  Google Scholar 

Download references

Funding

The study is funded by the Stiftung Bremer Herzen.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Harm Wienbergen.

Ethics declarations

Conflicts of interest

None.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 3 (MP4 16135 kb)

Supplementary material 5 (MP4 92626 kb)

Supplementary material 7 (MP4 19457 kb)

Supplementary material 9 (MP4 87626 kb)

Supplementary material 11 (MP4 68485 kb)

Supplementary material 13 (MP4 27494 kb)

Supplementary material 15 (MP4 6836 kb)

Supplementary material 17 (MP4 83974 kb)

Supplementary material 19 (MP4 118648 kb)

Supplementary material 21 (MP4 53965 kb)

Supplementary material 23 (MP4 17510 kb)

Supplementary material 25 (MP4 91185 kb)

Supplementary material 1 (DOCX 31 kb)

Supplementary material 2 (PPTX 67574 kb)

Supplementary material 4 (PPTX 18820 kb)

Supplementary material 6 (PPTX 1406 kb)

Supplementary material 8 (PPTX 41146 kb)

Supplementary material 10 (PPTX 3043 kb)

Supplementary material 12 (PPTX 15395 kb)

Supplementary material 14 (PPTX 4104 kb)

Supplementary material 16 (PPTX 9170 kb)

Supplementary material 18 (PPTX 25391 kb)

Supplementary material 20 (PPTX 4383 kb)

Supplementary material 22 (PPTX 1317 kb)

Supplementary material 24 (PPTX 14961 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wienbergen, H., Fach, A., Erdmann, J. et al. New technologies for intensive prevention programs after myocardial infarction: rationale and design of the NET-IPP trial. Clin Res Cardiol 110, 153–161 (2021). https://doi.org/10.1007/s00392-020-01695-w

Download citation

Keywords

  • Myocardial infarction
  • Web-based prevention program
  • Polygenic risk scores
  • Disclosure of genetic risk