The impact of biventricular heart failure on outcomes after transcatheter aortic valve implantation

  • Tobias SchmidtEmail author
  • Mintje Bohné
  • Michael Schlüter
  • Mitsunobu Kitamura
  • Peter Wohlmuth
  • Dimitry Schewel
  • Jury Schewel
  • Michael Schmoeckel
  • Karl-Heinz Kuck
  • Christian Frerker
Original Paper



We sought to assess the impact of different manifestations of heart failure (HF) at baseline on the short- and long-term outcomes of transcatheter aortic valve implantation (TAVI) for aortic stenosis (AS).

Methods and results

Of 361 patients undergoing TAVI between May 2013 and April 2015, 185 (51%) showed clinical signs of HF at the time of admission. HF was diagnosed as isolated left ventricular (LV) and biventricular in 63 (34%) and 122 patients (66%), respectively. Acute device success (VARC-2) was achieved in 97% of patients without HF, in all patients with LV HF, and in 97% of patients with biventricular HF. Follow-up for a median of 427 days revealed significantly poorer survival in patients with biventricular HF (1-year estimate, 72.1% [95% confidence interval, 64.0–80.2%]) than in patients with LV HF (84.5% [75.2–93.8%]; p = 0.0203) or no HF (94.3% [90.7–97.9%]; p < 0.0001). Survival in the latter two patient subgroups was statistically not different. A diagnosis of biventricular HF was associated with a hazard ratio of 2.62 (p = 0.0089) vs. no HF in the likelihood of death; NT-proBNP and the logistic EuroSCORE were not significantly associated with survival. Half of all deaths in patients with biventricular HF occurred within 42 days of TAVI.


Biventricular HF is a strong predictor of mortality following TAVI for severe AS. AS in patients with LV HF should be treated without delay to avoid progression to biventricular HF. Patients with AS and biventricular HF should be monitored closely after TAVI to possibly prevent early death.


TAVI Heart failure Acute and long-term outcome 



This work did not receive any funding.

Compliance with ethical standards

Conflict of interest

Tobias Schmidt has received lecture honoraria from Medtronic, as well as travel expenses from Edwards LifeSciences, Medtronic, and Boston Scientific. Christian Frerker has received lecture honoraria and travel expenses from Medtronic, Edwards Lifesciences, and Abbott Vascular. Karl-Heinz Kuck has received consultation fees from Medtronic, Boston Scientific, Biosense Webster, Edwards LifeSciences, and Abbott Vascular. The other authors report no conflicts of interest.

Supplementary material

392_2018_1400_MOESM1_ESM.docx (147 kb)
Supplementary material 1 (DOCX 146 KB)


  1. 1.
    Ponikowski P, Voors AA, Anker SD et al (2016) 2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 37:2129–2200CrossRefPubMedGoogle Scholar
  2. 2.
    Rosenhek R, Zilberszac R, Schemper M et al (2010) Natural history of very severe aortic stenosis. Circulation 121:151–156CrossRefPubMedGoogle Scholar
  3. 3.
    Rosenhek R, Binder T, Porenta G et al (2000) Predictors of outcome in severe, asymptomatic aortic stenosis. N Engl J Med 343:611–617CrossRefPubMedGoogle Scholar
  4. 4.
    Pellikka PA, Sarano ME, Nishimura RA et al (2005) Outcome of 622 adults with asymptomatic, hemodynamically significant aortic stenosis during prolonged follow-up. Circulation 111:3290–3295CrossRefPubMedGoogle Scholar
  5. 5.
    Lancellotti P, Lebois F, Simon M, Tombeux C, Chauvel C, Pierard LA (2005) Prognostic importance of quantitative exercise Doppler echocardiography in asymptomatic valvular aortic stenosis. Circulation 112:I377–I382PubMedGoogle Scholar
  6. 6.
    Bergler-Klein J, Klaar U, Heger M et al (2004) Natriuretic peptides predict symptom-free survival and postoperative outcome in severe aortic stenosis. Circulation 109:2302–2308CrossRefPubMedGoogle Scholar
  7. 7.
    Marechaux S, Hachicha Z, Bellouin A et al (2010) Usefulness of exercise-stress echocardiography for risk stratification of true asymptomatic patients with aortic valve stenosis. Eur Heart J 31:1390–1397CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Baumgartner H, Falk V, Bax JJ et al (2017) 2017 ESC/EACTS guidelines for the management of valvular heart disease. Eur Heart J 10:893–853Google Scholar
  9. 9.
    Frank S, Johnson A, Ross J (1973) Natural history of valvular aortic stenosis. Br Heart J 35:41–46CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Thiele H, Zeymer U, Neumann F-J et al (2012) Intraaortic balloon support for myocardial infarction with cardiogenic shock. N Engl J Med 367:1287–1296CrossRefPubMedGoogle Scholar
  11. 11.
    Smith CR, Leon MB, Mack MJ et al (2011) Transcatheter versus surgical aortic-valve replacement in high-risk patients. N Engl J Med 364:2187–2198CrossRefPubMedGoogle Scholar
  12. 12.
    Grube E, Laborde JC, Gerckens U et al (2006) Percutaneous implantation of the corevalve self-expanding valve prosthesis in high-risk patients with aortic valve disease. Circulation 114(15):1616–1624CrossRefPubMedGoogle Scholar
  13. 13.
    Kappetein AP, Head SJ, Genereux P et al (2012) Updated standardized endpoint definitions for transcatheter aortic valve implantation: the Valve Academic Research Consortium-2 consensus document. Eur Heart J 33:2403–2418CrossRefPubMedGoogle Scholar
  14. 14.
    R Core Team (2018) R:A language and environment for statistical computing. Available at: Accessed 20 Mar 2018
  15. 15.
    Malaisrie SC, McDonald E, Kruse J et al (2014) Mortality while waiting for aortic valve replacement. Ann Thorac Surg 98:1564–1570 :– discussion 1570–1.CrossRefPubMedGoogle Scholar
  16. 16.
    Landes U, Orvin K, Codner P et al (2016) Urgent transcatheter aortic valve implantation in patients with severe aortic stenosis and acute heart failure: procedural and 30-day outcomes. Can J Cardiol 32:726–731CrossRefPubMedGoogle Scholar
  17. 17.
    Frerker C, Schewel J, Schluter M et al (2016) Emergency transcatheter aortic valve replacement in patients with cardiogenic shock due to acutely decompensated aortic stenosis. EuroIntervention 11:1530–1536CrossRefPubMedGoogle Scholar
  18. 18.
    Van Ancum JM, Scheerman K, Pierik VD et al (2017) Muscle strength and muscle mass in older patients during hospitalization: the EMPOWER Study. Gerontology 63:507–514CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Boumendil A, Somme D, Garrouste-Orgeas M, Guidet B (2007) Should elderly patients be admitted to the intensive care unit? Intensive Care Med 33:1252CrossRefPubMedGoogle Scholar
  20. 20.
    Vidán MT, Sánchez E, Fernández-Avilés F, Serra-Rexach JA, Ortiz J, Bueno H (2014) FRAIL-HF, a study to evaluate the clinical complexity of heart failure in nondependent older patients: rationale, methods and baseline characteristics. Clin Cardiol 37:725–732CrossRefPubMedGoogle Scholar
  21. 21.
    Suissa S, Dell’Aniello S, Ernst P (2012) Long-term natural history of chronic obstructive pulmonary disease: severe exacerbations and mortality. Thorax 67:957–963CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Damman K, Valente MAE, Voors AA, O’Connor CM, van Veldhuisen DJ, Hillege HL (2014) Renal impairment, worsening renal function, and outcome in patients with heart failure: an updated meta-analysis. Eur Heart J 35:455–469CrossRefPubMedGoogle Scholar
  23. 23.
    Filippatos G, Farmakis D, Parissis J (2014) Renal dysfunction and heart failure: things are seldom what they seem. Eur Heart J 35:416–418CrossRefPubMedGoogle Scholar
  24. 24.
    Schewel J, Schewel D, Frerker C, Wohlmuth P, Kuck K-H, Schäfer U (2016) Invasive hemodynamic assessments during transcatheter aortic valve implantation: comparison of patient outcomes in higher vs. lower transvalvular gradients with respect to left ventricular ejection fraction. Clin Res Cardiol 105:59–71CrossRefPubMedGoogle Scholar
  25. 25.
    Schymik G, Tzamalis P, Herzberger V et al (2017) Transcatheter aortic valve implantation in patients with a reduced left ventricular ejection fraction: a single-centre experience in 2000 patients (TAVIK Registry). Clin Res Cardiol 106:1018–1025CrossRefPubMedGoogle Scholar
  26. 26.
    Fraccaro C, Al-Lamee R, Tarantini G et al. (2012) Transcatheter aortic valve implantation in patients with severe left ventricular dysfunction: immediate and mid-term results, a multicenter study. Circ Cardiovasc Interv 5:253–260CrossRefPubMedGoogle Scholar
  27. 27.
    Gotzmann M, Rahlmann P, Hehnen T et al (2012) Heart failure in severe aortic valve stenosis: prognostic impact of left ventricular ejection fraction and mean gradient on outcome after transcatheter aortic valve implantation. Eur J Heart Fail 14:1155–1162CrossRefPubMedGoogle Scholar
  28. 28.
    Eichler S, Salzwedel A, Harnath A et al (2018) Nutrition and mobility predict all-cause mortality in patients 12 months after transcatheter aortic valve implantation. Clin Res Cardiol 107:304–311CrossRefPubMedGoogle Scholar
  29. 29.
    Arsalan M, Filardo G, Kim W-K et al (2016) Prognostic value of body mass index and body surface area on clinical outcomes after transcatheter aortic valve implantation. Clin Res Cardiol 105:1042–1048CrossRefPubMedGoogle Scholar
  30. 30.
    Abdelghani M, Cavalcante R, Miyazaki Y et al (2017) Prevalence, predictors, and prognostic implications of residual impairment of functional capacity after transcatheter aortic valve implantation. Clin Res Cardiol 106:752–759CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Tobias Schmidt
    • 1
    Email author
  • Mintje Bohné
    • 1
  • Michael Schlüter
    • 2
  • Mitsunobu Kitamura
    • 1
  • Peter Wohlmuth
    • 2
  • Dimitry Schewel
    • 1
  • Jury Schewel
    • 1
  • Michael Schmoeckel
    • 3
  • Karl-Heinz Kuck
    • 1
  • Christian Frerker
    • 1
  1. 1.Department of CardiologyAsklepios Klinik St. GeorgHamburgGermany
  2. 2.Asklepios ProresearchHamburgGermany
  3. 3.Department of Cardiovascular SurgeryAsklepios Klinik St. GeorgHamburgGermany

Personalised recommendations