Advertisement

T cell and monocyte/macrophage activation markers associate with adverse outcome, but give limited prognostic value in anemic patients with heart failure: results from RED-HF

  • Aurelija Abraityte
  • Pål Aukrust
  • Lei Kou
  • Inder S. Anand
  • James Young
  • John J. V. Mcmurray
  • Dirk J. van Veldhuisen
  • Lars Gullestad
  • Thor Ueland
Original Paper
  • 112 Downloads

Abstract

Background

Activated leukocytes may contribute to the development and progression of heart failure (HF). We investigated the predictive value of circulating levels of stable and readily detectable markers reflecting both monocyte/macrophage and T-cell activity, on clinical outcomes in HF patients with reduced ejection fraction (HFrEF).

Methods

The association between baseline plasma levels of soluble CD163 (sCD163), macrophage migration inhibitory factor (MIF), granulysin, soluble interleukin-2 receptor (sIL-2R), and activated leukocyte cell adhesion molecule (ALCAM) and the primary endpoint of death from any cause or first hospitalization for worsening of HF was evaluated using multivariable Cox proportional hazard models in 1541 patients with systolic HF and mild to moderate anemia, enrolled in the Reduction of Events by darbepoetin alfa in Heart Failure (RED-HF) trial. Modifying effects and interaction with darbepoetin alfa treatment were also assessed.

Results

All leukocyte markers, except granulysin, were associated with the primary outcome and all-cause death in univariate analysis (all p < 0.01) and remained significantly associated in multivariable analysis adjusting for conventional clinical variables (e.g. age, gender, BMI, NYHA class, creatinine, LVEF, etiology) and CRP. However, after final adjustment for TnT and NT-proBNP no associations were found with outcomes. No interaction with darbepoetin alpha treatment was observed for any marker.

Conclusions

Leukocyte activation markers sCD163, MIF, sIL-2R, and ALCAM were associated with adverse outcome in patients with HFrEF, but add little as prognostic markers on top of established biochemical risk markers.

Keywords

Leukocyte Monocyte Macrophage T cell Heart failure Prognosis 

Notes

Compliance with ethical standards

Conflict of interest

Inder Anand, John J. V. Mcmurray, Dirk J. van Veldhuisen and James Young are members of the RED-HF Executive Committee—no payments in the last 12 months. John J. V. Mcmurray has received travel and accommodation costs paid by Cytokinetics/Amgen in relation to advisory board and clinical trial meetings about omecamtiv mecarbil.

Supplementary material

392_2018_1331_MOESM1_ESM.docx (384 kb)
Supplementary material 1 (DOCX 383 KB)

References

  1. 1.
    Frangogiannis NG (2014) The inflammatory response in myocardial injury, repair, and remodelling. Nat Rev Cardiol 11(5):255–265.  https://doi.org/10.1038/nrcardio.2014.28 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Vaduganathan M, Greene SJ, Butler J, Sabbah HN, Shantsila E, Lip GY, Gheorghiade M (2013) The immunological axis in heart failure: importance of the leukocyte differential. Heart Fail Rev 18(6):835–845.  https://doi.org/10.1007/s10741-012-9352-9 CrossRefPubMedGoogle Scholar
  3. 3.
    Wrigley BJ, Lip GY, Shantsila E (2011) The role of monocytes and inflammation in the pathophysiology of heart failure. Eur J Heart Fail 13(11):1161–1171.  https://doi.org/10.1093/eurjhf/hfr122 CrossRefPubMedGoogle Scholar
  4. 4.
    Radenovic S, Loncar G, Busjahn A, Apostolovic S, Zdravkovic M, Karlicic V, Veskovic J, Tahirovic E, Butler J, Dungen HD (2018) Systemic inflammation and functional capacity in elderly heart failure patients. Clin Res Cardiol 107(4):362–367.  https://doi.org/10.1007/s00392-017-1195-x CrossRefPubMedGoogle Scholar
  5. 5.
    Hofmann U, Frantz S (2015) Role of lymphocytes in myocardial injury, healing, and remodeling after myocardial infarction. Circ Res 116(2):354–367.  https://doi.org/10.1161/circresaha.116.304072 CrossRefPubMedGoogle Scholar
  6. 6.
    Swirski FK, Nahrendorf M (2013) Leukocyte behavior in atherosclerosis, myocardial infarction, and heart failure. Science 339(6116):161–166.  https://doi.org/10.1126/science.1230719 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Ueland T, Gullestad L, Nymo SH, Yndestad A, Aukrust P, Askevold ET (2014) Inflammatory cytokines as biomarkers in heart failure. Clin Chimica Acta Int J Clin Chem.  https://doi.org/10.1016/j.cca.2014.09.001 CrossRefGoogle Scholar
  8. 8.
    Ky B, French B, Levy WC, Sweitzer NK, Fang JC, Wu AH, Goldberg LR, Jessup M, Cappola TP (2012) Multiple biomarkers for risk prediction in chronic heart failure. Circulation Heart Fail 5(2):183–190.  https://doi.org/10.1161/CIRCHEARTFAILURE.111.965020 CrossRefGoogle Scholar
  9. 9.
    Chen YS, Gi WT, Liao TY, Lee MT, Lee SH, Hsu WT, Chang SS, Lee CC (2016) Using the galectin-3 test to predict mortality in heart failure patients: a systematic review and meta-analysis. Biomarkers Med 10(3):329–342.  https://doi.org/10.2217/bmm.15.121 CrossRefGoogle Scholar
  10. 10.
    Gil VM, Ferreira JS (2014) Anemia and iron deficiency in heart failure. Rev Port Cardiol 33(1):39–44.  https://doi.org/10.1016/j.repc.2013.06.003 CrossRefPubMedGoogle Scholar
  11. 11.
    von Haehling S, Gremmler U, Krumm M, Mibach F, Schon N, Taggeselle J, Dahm JB, Angermann CE (2017) Prevalence and clinical impact of iron deficiency and anaemia among outpatients with chronic heart failure: the PrEP registry. Clin Res Cardiol 106(6):436–443.  https://doi.org/10.1007/s00392-016-1073-y CrossRefGoogle Scholar
  12. 12.
    Riedel O, Ohlmeier C, Enders D, Elsasser A, Vizcaya D, Michel A, Eberhard S, Schlothauer N, Berg J, Garbe E (2018) The contribution of comorbidities to mortality in hospitalized patients with heart failure. Clin Res Cardiol 107(6):487–497.  https://doi.org/10.1007/s00392-018-1210-x CrossRefPubMedGoogle Scholar
  13. 13.
    Nairz M, Theurl I, Wolf D, Weiss G (2016) Iron deficiency or anemia of inflammation? Differential diagnosis and mechanisms of anemia of inflammation. Wiener Medizinische Wochenschrift 166(13–14):411–423.  https://doi.org/10.1007/s10354-016-0505-7 CrossRefPubMedGoogle Scholar
  14. 14.
    Hintz KA, Rassias AJ, Wardwell K, Moss ML, Morganelli PM, Pioli PA, Givan AL, Wallace PK, Yeager MP, Guyre PM (2002) Endotoxin induces rapid metalloproteinase-mediated shedding followed by up-regulation of the monocyte hemoglobin scavenger receptor CD163. J Leukoc Biol 72(4):711–717PubMedGoogle Scholar
  15. 15.
    Calandra T, Bernhagen J, Mitchell RA, Bucala R (1994) The macrophage is an important and previously unrecognized source of macrophage migration inhibitory factor. J Exp Med 179(6):1895–1902CrossRefPubMedGoogle Scholar
  16. 16.
    Rubin LA, Kurman CC, Fritz ME, Biddison WE, Boutin B, Yarchoan R, Nelson DL (1985) Soluble interleukin 2 receptors are released from activated human lymphoid cells in vitro. J Immunol 135(5):3172–3177PubMedGoogle Scholar
  17. 17.
    Bowen MA, Patel DD, Li X, Modrell B, Malacko AR, Wang WC, Marquardt H, Neubauer M, Pesando JM, Francke U et al (1995) Cloning, mapping, and characterization of activated leukocyte-cell adhesion molecule (ALCAM), a CD6 ligand. J Exp Med 181(6):2213–2220CrossRefPubMedGoogle Scholar
  18. 18.
    Tewary P, Yang D, de la Rosa G, Li Y, Finn MW, Krensky AM, Clayberger C, Oppenheim JJ (2010) Granulysin activates antigen-presenting cells through TLR4 and acts as an immune alarmin. Blood 116(18):3465–3474.  https://doi.org/10.1182/blood-2010-03-273953 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Swedberg K, Young JB, Anand IS, Cheng S, Desai AS, Diaz R, Maggioni AP, McMurray JJ, O’Connor C, Pfeffer MA, Solomon SD, Sun Y, Tendera M, van Veldhuisen DJ, Committees R-H, Investigators R-H (2013) Treatment of anemia with darbepoetin alfa in systolic heart failure. N Engl J Med 368(13):1210–1219.  https://doi.org/10.1056/NEJMoa1214865 CrossRefPubMedGoogle Scholar
  20. 20.
    McMurray JJ, Anand IS, Diaz R, Maggioni AP, O’Connor C, Pfeffer MA, Polu KR, Solomon SD, Sun Y, Swedberg K, Tendera M, van Veldhuisen DJ, Wasserman SM, Young JB (2009) Design of the reduction of events with darbepoetin alfa in heart failure (RED-HF): a phase III, anaemia correction, morbidity-mortality trial. Eur J Heart Fail 11(8):795–801.  https://doi.org/10.1093/eurjhf/hfp098 CrossRefPubMedGoogle Scholar
  21. 21.
    McMurray JJ, Anand IS, Diaz R, Maggioni AP, O’Connor C, Pfeffer MA, Solomon SD, Tendera M, van Veldhuisen DJ, Albizem M, Cheng S, Scarlata D, Swedberg K, Young JB, Investigators R-HC (2013) Baseline characteristics of patients in the reduction of events with darbepoetin alfa in heart failure trial (RED-HF). Eur J Heart Fail 15(3):334–341.  https://doi.org/10.1093/eurjhf/hfs204 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Ptaszynska-Kopczynska K, Marcinkiewicz-Siemion M, Lisowska A, Waszkiewicz E, Witkowski M, Jasiewicz M, Miklasz P, Jakim P, Galar B, Musial WJ, Kaminski KA (2016) Alterations of soluble TWEAK and CD163 concentrations in patients with chronic heart failure. Cytokine 80:7–12.  https://doi.org/10.1016/j.cyto.2016.02.005 CrossRefPubMedGoogle Scholar
  23. 23.
    Gullestad L, Ueland T, Brunsvig A, Kjekshus J, Simonsen S, Froland SS, Aukrust P (2001) Effect of metoprolol on cytokine levels in chronic heart failure—a substudy in the metoprolol controlled-release randomised intervention trial in heart failure (MERIT-HF). Am Heart J 141(3):418–421.  https://doi.org/10.1067/mhj.2001.112785 CrossRefPubMedGoogle Scholar
  24. 24.
    Limas CJ, Hasikidis C, Iakovou J, Kroupis C, Haidaroglou A, Cokkinos DV (2003) Prognostic significance of soluble interleukin-2 receptor levels in patients with dilated cardiomyopathy. Eur J Clin Invest 33(6):443–448CrossRefPubMedGoogle Scholar
  25. 25.
    Suthahar N, Meijers WC, Brouwers FP, Heerspink HJL, Gansevoort RT, van der Harst P, Bakker SJL, de Boer RA (2018) Heart failure and inflammation-related biomarkers as predictors of new-onset diabetes in the general population. Int J Cardiol 250:188–194.  https://doi.org/10.1016/j.ijcard.2017.10.035 CrossRefPubMedGoogle Scholar
  26. 26.
    Anand IS (2008) Anemia and chronic heart failure implications and treatment options. J Am Coll Cardiol 52(7):501–511.  https://doi.org/10.1016/j.jacc.2008.04.044 CrossRefPubMedGoogle Scholar
  27. 27.
    O’Meara E, Murphy C, McMurray JJ (2004) Anemia and heart failure. Curr Heart Fail Rep 1(4):176–182CrossRefPubMedGoogle Scholar
  28. 28.
    Kristal B, Shurtz-Swirski R, Shasha SM, Manaster J, Shapiro G, Furmanov M, Hassan K, Weissman I, Sela S (1999) Interaction between erythropoietin and peripheral polymorphonuclear leukocytes in hemodialysis patients. Nephron 81(4):406–413.  https://doi.org/10.1159/000045324 CrossRefPubMedGoogle Scholar
  29. 29.
    Sela S, Shurtz-Swirski R, Sharon R, Manaster J, Chezar J, Shkolnik G, Shapiro G, Shasha SM, Merchav S, Kristal B (2001) The polymorphonuclear leukocyte—a new target for erythropoietin. Nephron 88(3):205–210.  https://doi.org/10.1159/000045991 CrossRefPubMedGoogle Scholar
  30. 30.
    Pesce M, Felaco P, Franceschelli S, Speranza L, Grilli A, De Lutiis MA, Ferrone A, Sirolli V, Bonomini M, Felaco M, Patruno A (2014) Effect of erythropoietin on primed leucocyte expression profile. Open Biol 4(6):140026.  https://doi.org/10.1098/rsob.140026 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Martiney JA, Sherry B, Metz CN, Espinoza M, Ferrer AS, Calandra T, Broxmeyer HE, Bucala R (2000) Macrophage migration inhibitory factor release by macrophages after ingestion of Plasmodium chabaudi-infected erythrocytes: possible role in the pathogenesis of malarial anemia. Infect Immun 68(4):2259–2267CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    McDevitt MA, Xie J, Ganapathy-Kanniappan S, Griffith J, Liu A, McDonald C, Thuma P, Gordeuk VR, Metz CN, Mitchell R, Keefer J, David J, Leng L, Bucala R (2006) A critical role for the host mediator macrophage migration inhibitory factor in the pathogenesis of malarial anemia. J Exp Med 203(5):1185–1196.  https://doi.org/10.1084/jem.20052398 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Pereira R, Costa E, Goncalves M, Miranda V, do Sameiro Faria M, Quintanilha A, Belo L, Lima M, Santos-Silva A (2010) Neutrophil and monocyte activation in chronic kidney disease patients under hemodialysis and its relationship with resistance to recombinant human erythropoietin and to the hemodialysis procedure. Hemodial Int Symp Home Hemodial 14(3):295–301.  https://doi.org/10.1111/j.1542-4758.2010.00450.x CrossRefGoogle Scholar
  34. 34.
    Cooper AC, Breen CP, Vyas B, Ochola J, Kemeny DM, Macdougall IC (2003) Poor response to recombinant erythropoietin is associated with loss of T-lymphocyte CD28 expression and altered interleukin-10 production. Nephrol Dialysis Transplant 18(1):133–140CrossRefGoogle Scholar
  35. 35.
    Ray KK, Morrow DA, Sabatine MS, Shui A, Rifai N, Cannon CP, Braunwald E (2007) Long-term prognostic value of neopterin: a novel marker of monocyte activation in patients with acute coronary syndrome. Circulation 115(24):3071–3078.  https://doi.org/10.1161/CIRCULATIONAHA.106.666511 CrossRefPubMedGoogle Scholar
  36. 36.
    Reiner AP, Lange EM, Jenny NS, Chaves PH, Ellis J, Li J, Walston J, Lange LA, Cushman M, Tracy RP (2013) Soluble CD14: genomewide association analysis and relationship to cardiovascular risk and mortality in older adults. Arteriosclerosis Thromb Vascular Biol 33 (1):158–164.  https://doi.org/10.1161/ATVBAHA.112.300421 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Aurelija Abraityte
    • 1
    • 4
    • 5
  • Pål Aukrust
    • 1
    • 3
    • 4
    • 6
  • Lei Kou
    • 8
  • Inder S. Anand
    • 9
  • James Young
    • 8
  • John J. V. Mcmurray
    • 10
  • Dirk J. van Veldhuisen
    • 11
  • Lars Gullestad
    • 2
    • 5
  • Thor Ueland
    • 1
    • 4
    • 7
  1. 1.Research Institute of Internal MedicineOslo University HospitalOsloNorway
  2. 2.Department of CardiologyOslo University HospitalOsloNorway
  3. 3.Section of Clinical Immunology and Infectious DiseasesOslo University HospitalOsloNorway
  4. 4.Faculty of MedicineUniversity of OsloOsloNorway
  5. 5.Center for Heart Failure ResearchUniversity of OsloOsloNorway
  6. 6.K. G. Jebsen Inflammation Research CenterUniversity of OsloOsloNorway
  7. 7.K. G. Jebsen Thrombosis Research and Expertise CenterUniversity of TromsøTromsöNorway
  8. 8.Cleveland Clinic FoundationClevelandUSA
  9. 9.VA Medical Center and University of MinnesotaMinneapolisUSA
  10. 10.BHF Glasgow Cardiovascular Research CentreUniversity of GlasgowGlasgowUK
  11. 11.University Medical Center GroningenGroningenThe Netherlands

Personalised recommendations