Skip to main content
Log in

Hypertension: history and development of established and novel treatments

  • Review
  • Published:
Clinical Research in Cardiology Aims and scope Submit manuscript

Abstract

Background

This article summarizes the emerging field of hypertension over the last decades. It covers paradigm shifts on hypertension from an undefined cardiovascular condition to the most relevant cardiovascular modifiable risk factor and the developments of drug treatments and interventional treatments to improve cardiovascular outcomes.

Methods

We performed a selective literature research in PubMed on trials published in the past until 2018 without time restrictions and covered unpublished trials disclosed in ClinicalTrials.org.

Results

The development of treatments of hypertension is a success story covering many decades from the early attempts with drug treatments, development of tolerable and effective medications to interventional techniques involving renal denervation, AV fistulas, and autonomic devices. Novel guidelines define new definitions and treatment targets of hypertension, which are a matter of ongoing discussion.

Conclusion

Despite the development of tolerable and effective drugs, new treatments in the field of neuroendocrine modulation by drugs and devices are still under development trying to further improve treatment of patients with hypertension and to further reduce cardiovascular events in those individuals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Modified from Azizi et al. [87]

Fig. 7

Modified from Townsend et al. [92]

Fig. 8

Modified from Mahfoud F, presented at EuroPCR 2018

References

  1. World Health Organization (2013) A global brief on hypertension—World Health Day 2013

  2. Ettehad D, Emdin CA, Kiran A et al (2016) Blood pressure lowering for prevention of cardiovascular disease and death: a systematic review and meta-analysis. Lancet 387:957–967

    Article  PubMed  Google Scholar 

  3. Lewington S, Clarke R, Qizilbash N et al (2002) Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet 360:1903–1913

    Article  PubMed  Google Scholar 

  4. Harvey W, Sigerist HE (1628) Exercitatio anatomica de motu cordis et Sanguinis in animalibus. Movement of the heart and blood in animals. Sumptibus Guilielmi Fitzeri

  5. Hales S (1733) Statical essays: Containing haemastaticks; Or, an account of some hydraulick and hydrostatical experiments made on the blood and blood-vessels of animals. Meet Counc R Soc 2:426

    Google Scholar 

  6. Multanowski M (1970) Korotkoff’s method. The history of its discovery, of its clinical and experimental interpretation and modern appreciation. The 50th anniversary of N.S. Korotkoff’s death. Cor Vasa 12:106

    Google Scholar 

  7. Paullin JE (1926) Ultimate results of essential hypertension. JAMA 87:925–928

    Article  Google Scholar 

  8. Hay J (1931) A british medical association lecture on the significance of a raised blood pressure. Br Med J 2:43–47

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Keith N, Wagener H, Barker N (1974) Some different types of essential hypertension: their course and prognosis. Am J Med SCI 268:336–345

    Article  PubMed  CAS  Google Scholar 

  10. Gudbrandsson T (1981) Malignant hypertension; A clinical follow-up study with special reference to renal and cardiovascular function and immunogenetic factors. Acta Med Scand 650:1–62

    CAS  Google Scholar 

  11. Ross CG (1945) “Came out of clear sky,” says President’s physician. St Louis Post-Dispatch A2

  12. Messerli FH (1995) This day 50 years ago. N Engl J Med 332:1038–1039

    Article  PubMed  CAS  Google Scholar 

  13. Veterans Administration Cooperative Study Group on Antihypertensive Agents (1967) Effects of treatment on morbidity in hypertension. Results in patients with diastolic blood pressures averaging 115 through 129 mm Hg. JAMA 202:1028–1034

    Article  Google Scholar 

  14. Veterans Administration Cooperative Study Group on Antihypertensive Agents (1970) Effects morbidity of treatment on in hypertension. Results in patients with diastolic blood pressures averaging 90 through 114 mm Hg. JAMA 213:1143–1152

    Article  Google Scholar 

  15. Kempner W (1948) Treatment of hypertensive vascular disease with rice diet. Am J Med 4:545–577

    Article  PubMed  CAS  Google Scholar 

  16. Page I, Taylor R (1949) Pyrogens in the treatment of malignant hypertension. Mod Concepts Cardiovasc Dis 18:51

    PubMed  CAS  Google Scholar 

  17. Freis E, Wilkins R (1947) Effect of pentaquine in patients with hypertension. Proc Soc Exp Biol Med 64:455–458

    Article  PubMed  CAS  Google Scholar 

  18. Hines EA (1946) The thiocyanates in the treatment of hypertensive disease. Med Clin North Am 30:869–877

    Article  PubMed  Google Scholar 

  19. Adrogué HJ, Madias NE (2007) Sodium and potassium in the pathogenesis of hypertension. N Engl J Med 356:1966–1978

    Article  PubMed  Google Scholar 

  20. Center for Disease Control (2010) Centers for disease control and prevention morbidity and mortality weekly report. MMWR Morb Mortal Wkly Rep 59(24):746–749

    Google Scholar 

  21. He FJ, Pombo-Rodrigues S, MacGregor GA (2014) Salt reduction in England from 2003 to 2011: its relationship to blood pressure, stroke and ischaemic heart disease mortality. BMJ Open 4:e004549. https://doi.org/10.1136/bmjopen-2013-004549

    Article  PubMed  PubMed Central  Google Scholar 

  22. Sasaki N (1980) Epidemiological studies on hypertension in northeast Japan. In: Kesteloot H, Joossens JV (eds) Epidemiology of arterial blood pressure. Developments in cardiovascular medicine, vol 8. Springer, Dordrecht, pp 367–377

    Chapter  Google Scholar 

  23. Karppanen H, Mervaala E (2006) Sodium intake and hypertension. Prog Cardiovasc Dis 49:59–75

    Article  PubMed  CAS  Google Scholar 

  24. Lerchl K, Rakova N, Dahlmann A et al (2015) Agreement between 24-hour salt ingestion and sodium excretion in a controlled environment. Hypertension 66:850–857

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Ludwig C (1842) De viribus physicis secretionem urinae adjuvantibus: Marburge Cattorum. Elwert, Marburg

    Google Scholar 

  26. Bradford J (1889) The innervation of the renal blood vessels. J Physiol 10:358–432

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Sen S (1936) Some observations on decapsulation and denervation of the kidney. Br J Urol 8:319–328

    Article  Google Scholar 

  28. Papin E, Ambard L (1924) Resection of the nerves of the kidney for nephralgia and small hydronephroses. J Urol 11:337

    Article  Google Scholar 

  29. Page I, Heuer G (1935) The effect of renal denervation on the level of arterial blood pressure and renal function in essential hypertension. J Clin Invest 14:27–30

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Page I, Heuer G (1935) The effect of renal denervation on patients suffering from nephritis. J Clin Invest 14:443–458

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Smithwick RH, Thompson JE (1953) Splanchnicectomy for essential hypertension: results in 1,266 cases. J Am Med Assoc 152:1501–1504

    Article  PubMed  CAS  Google Scholar 

  32. Grimson KS, Orgain ES, Anderson B, D’Angelo GJ (1953) Total thoracic and partial to total lumbar sympathectomy, splanchnicectomy and celiac ganglionectomy for hypertension. Ann Surg 138:532–547

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Esler M (2010) The 2009 Carl Ludwig Lecture: pathophysiology of the human sympathetic nervous system in cardiovascular diseases: the transition from mechanisms to medical management. J Appl Physiol 108:227–237

    Article  PubMed  CAS  Google Scholar 

  34. Böhm M, Linz D, Ukena C et al (2014) Renal denervation for the treatment of cardiovascular high risk-hypertension or beyond? Circ Res 115:400–409

    Article  PubMed  Google Scholar 

  35. Vogl A (1950) The discovery of the organic mercurial diuretics. Am Heart J 39:881–883

    Article  PubMed  CAS  Google Scholar 

  36. Freis ED, Wanko A, Wilson IM, Parrish AE (1958) Treatment of essential hypertension with chlorothiazide (diuril): Its use alone and combined with other antihypertensive agents. J Am Med Assoc 166:137–140

    Article  PubMed  CAS  Google Scholar 

  37. Muschaweck R, Hajdú P (1964) Die salidiuretische Wirksamkeit der Chlor-N-(2-furylmethyl)5-sulfamy-anthranilsäure. Arzneimittelforschung 14:44–47

    PubMed  CAS  Google Scholar 

  38. Moyer J (1954) Cardiovascular and renal hemodynamic response to reserpine (serpasil), and clinical results of using this agent for the treatment of hypertension. Ann N Y Acad Sci 59:82–94

    Article  PubMed  CAS  Google Scholar 

  39. Day M, Rand M (1963) A hypothesis for the mode of action of alpha-methyldopa in relieving hypertension. J Pharm Pharmacol 15:221–224

    Article  PubMed  CAS  Google Scholar 

  40. Hoefke W, Kobinger W (1966) Pharmakologische Wirkungen des 2-(2,6-Dichlorophenylamino)-2-Imidazolin-hydrochlorids, einer neuen antihypertensiven Substanz. Arzneimittelforschung 16:1038–1050

    PubMed  CAS  Google Scholar 

  41. Tigerstedt R, Bergmann P (1898) Niere und Kreislauf. Scand Arch Physiol 7–8:223–271

    Article  Google Scholar 

  42. Lindner E (1960) Phenyl-propyl-diphenyl-propyl-amin, eine neue Substanz mit coronargefäßerweiternder Wirkung. Arzneimittelforschung1 10:569–573

    CAS  Google Scholar 

  43. Fleckenstein A (1964) Die Bedeutung der energiereichen Phosphate für Kontraktilität und Tonus des Myokards. Verh Dtsch Ges Inn Med 70:81–99

    PubMed  CAS  Google Scholar 

  44. Mills KT, Bundy JD, Kelly TN et al (2016) Global disparities of hypertension prevalence and control—global disparities of hypertension prevalence and control a systematic analysis of population-based studies from 90 countries. Circulation 134:441–450

    Article  PubMed  PubMed Central  Google Scholar 

  45. Kearney PM, Whelton M, Reynolds K et al (2005) Global burden of hypertension: analysis of worldwide data. Lancet 365:217–223

    Article  PubMed  Google Scholar 

  46. Lawes CMM, Rodgers A, Bennett D et al (2003) Blood pressure and cardiovascular disease in the Asia Pacific region. J Hypertens 21:707–716

    Article  PubMed  CAS  Google Scholar 

  47. Rapsomaniki E, Timmis A, George J et al (2014) Blood pressure and incidence of twelve cardiovascular diseases: Lifetime risks, healthy life-years lost, and age-specific associations in 1·25 million people. Lancet 383:1899–1911

    Article  PubMed  PubMed Central  Google Scholar 

  48. Parati G, Stergiou G, O’Brien E et al (2014) European society of hypertension practice guidelines for ambulatory blood pressure monitoring. J Hypertens 32:1359–1366

    Article  PubMed  CAS  Google Scholar 

  49. Sheppard JP, Holder R, Nichols L et al (2014) Predicting out-of-office blood pressure level using repeated measurements in the clinic: an observational cohort study. J Hypertens 32:2171–2178

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Kjeldsen SE, Lund-Johansen P, Nilsson PM, Mancia G (2016) Unattended blood pressure measurements in the systolic blood pressure intervention trial: Implications for entry and achieved blood pressure values compared with other trials. Hypertension 67:808–812

    Article  PubMed  CAS  Google Scholar 

  51. Mancia G, Verdecchia P (2015) Clinical value of ambulatory blood pressure: evidence and limits. Circ Res 116:1034–1045

    Article  PubMed  CAS  Google Scholar 

  52. Banegas JR, Ruilope LM, de la Sierra A et al (2018) Relationship between clinic and ambulatory blood-pressure measurements and mortality. N Engl J Med 378:1509–1520

    Article  PubMed  Google Scholar 

  53. SPRINT Research Group, Wright JT, Williamson JD, et al (2015) A randomized trial of intensive versus standard blood-pressure control. N Engl J Med 373:2103–2116

    Article  Google Scholar 

  54. Thomopoulos C, Parati G, Zanchetti A (2014) Effects of blood pressure lowering on outcome incidence in hypertension. 1. Overview, meta-analyses, and meta-regression analyses of randomized trials. J Hypertens 32:2285–2295

    Article  PubMed  CAS  Google Scholar 

  55. Böhm M, Schumacher H, Teo KK et al (2017) Achieved blood pressure and cardiovascular outcomes in high-risk patients: results from ONTARGET and TRANSCEND trials. Lancet 389:2226–2237

    Article  PubMed  Google Scholar 

  56. Williams B, Mancia G, Spiering W et al (2018) 2018 ESH/ESC Guidelines for the management of aterial hypertension. Eur Heart J (unpublished)

  57. Vidal-Petiot E, Ford I, Greenlaw N et al (2016) Cardiovascular event rates and mortality according to achieved systolic and diastolic blood pressure in patients with stable coronary artery disease: an international cohort study. Lancet 388:2142–2152

    Article  PubMed  Google Scholar 

  58. Böhm M, Schumacher H, Teo KK et al (2018) Achieved diastolic blood pressure and pulse pressure at target systolic blood pressure (120–140 mmHg) and cardiovascular outcomes in high-risk patients: results from ONTARGET and TRANSCEND trials. Eur Heart J. https://doi.org/10.1093/eurheartj/ehy287

    Article  PubMed  Google Scholar 

  59. Psaty BM, Lumley T, Furberg CD et al (2003) Health outcomes associated with various antihypertensive therapies used as first-line agents: a network meta-analysis. J Am Med Assoc 289:2534–2544

    Article  CAS  Google Scholar 

  60. Costanzo P, Perrone-Filardi P, Petretta M et al (2009) Calcium channel blockers and cardiovascular outcomes: a meta-analysis of 175,634 patients. J Hypertens 27:1136–1151

    Article  PubMed  CAS  Google Scholar 

  61. Van Vark LC, Bertrand M, Akkerhuis KM et al (2012) Angiotensin-converting enzyme inhibitors reduce mortality in hypertension: A meta-analysis of randomized clinical trials of renin–angiotensin–aldosterone system inhibitors involving 158 998 patients. Eur Heart J 33:2088–2097

    Article  PubMed  PubMed Central  Google Scholar 

  62. Turnbull F, Neal B, Algert C et al (2005) Effects of different blood pressure-lowering regimens on major cardiovascular events in individuals with and without diabetes mellitus: results of prospectively designed overviews of randomized trials. Arch Intern Med 165:1410–1419

    Article  PubMed  Google Scholar 

  63. Mancia G, Fagard R, Narkiewicz K et al (2013) 2013 ESH/ESC guidelines for the management of arterial hypertension: the Task Force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). Eur Heart J 34:2159–2219

    Article  PubMed  Google Scholar 

  64. Whelton PK, Carey RM, Aronow WS et al (2017) 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: executive summary. Hypertension 71(6):1269–1324

    Article  PubMed  Google Scholar 

  65. Ogihara T, Saruta T, Rakugi H et al (2010) Target blood pressure for treatment of isolated systolic hypertension in the elderly: valsartan in elderly isolated systolic hypertension study. Hypertension 56:196–202

    Article  PubMed  CAS  Google Scholar 

  66. Law MR, Morris JK, Wald NJ (2009) Use of blood pressure lowering drugs in the prevention of cardiovascular disease: Meta-analysis of 147 randomised trials in the context of expectations from prospective epidemiological studies. BMJ 338:b1665

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Dahlof B, Devereux BR, Kjeldsen SE (2002) Cardiovascular morbidity and mortality in the losartan intervention for end point reduction in hypertension study (LIFE): a randomised trial against atenolol. ACC Curr J Rev 11:26

    Article  Google Scholar 

  68. Silvestri A, Galetta P, Cerquetani E et al (2003) Report of erectile dysfunction after therapy with beta-blockers is related to patient knowledge of side effects and is reversed by placebo. Eur Heart J 24:1928–1932

    Article  PubMed  CAS  Google Scholar 

  69. Calhoun D, Jones D, Textor S et al (2008) Resistant hypertension: diagnosis, evaluation, and treatment: a scientific statement from the American Heart Association Professional Education Committee of the Council for High Blood Pressure Research. Circulation 117:e510–e526

    Article  PubMed  Google Scholar 

  70. Egan BM, Zhao Y, Axon RN et al (2011) Uncontrolled and apparent treatment resistant hypertension in the United States, 1988 to 2008. Circulation 124:1046–1058

    Article  PubMed  PubMed Central  Google Scholar 

  71. Krieger EM, Drager LF, Giorgi DMA et al (2018) Spironolactone versus clonidine as a fourth-drug therapy for resistant hpertension novelty and significance. Hypertension 71:681–690

    Article  PubMed  CAS  Google Scholar 

  72. Williams B, Macdonald TM, Morant S et al (2015) Spironolactone versus placebo, bisoprolol, and doxazosin to determine the optimal treatment for drug-resistant hypertension (PATHWAY-2): a randomised, double-blind, crossover trial. Lancet 386:2059–2068

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Václavík J, Sedlák R, Plachý M et al (2011) Addition of spironolactone in patients with resistant arterial hypertension (ASPIRANT): a randomized, double-blind, placebo-controlled trial. Hypertension 57:1069–1075

    Article  PubMed  Google Scholar 

  74. Schulz M, Krueger K, Schuessel K et al (2016) Medication adherence and persistence according to different antihypertensive drug classes: A retrospective cohort study of 255,500 patients. Int J Cardiol 220:668–676

    Article  PubMed  Google Scholar 

  75. Berra E, Azizi M, Capron A et al (2016) Evaluation of adherence should become an integral part of assessment of patients with apparently treatment-resistant hypertension. Hypertension 68:297–306

    Article  PubMed  CAS  Google Scholar 

  76. Gupta P, Patel P, Štrauch B et al (2017) Risk factors for nonadherence to antihypertensive treatment. Hypertension 69:1113–1120

    Article  PubMed  CAS  Google Scholar 

  77. Wald DS, Law M, Morris JK et al (2009) Combination therapy versus monotherapy in reducing blood pressure: meta-analysis on 11,000 participants from 42 trials. Am J Med 122:290–300

    Article  PubMed  Google Scholar 

  78. Chow CK, Thakkar J, Bennett A et al (2017) Quarter-dose quadruple combination therapy for initial treatment of hypertension: placebo-controlled, crossover, randomised trial and systematic review. Lancet 389:1035–1042

    Article  PubMed  CAS  Google Scholar 

  79. Bobrow K, Farmer AJ, Springer D et al (2016) Mobile phone text messages to support treatment adherence in adults with high blood pressure (SMS-Text Adherence Support [StAR]): a single-blind, randomized trial. Circulation 133:592–600

    Article  PubMed  PubMed Central  Google Scholar 

  80. McNaughton CD, Brown NJ, Rothman RL et al (2017) Systolic blood pressure and biochemical assessment of adherence: a cross-sectional analysis in the emergency department. Hypertension 70:307–314

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Gupta P, Patel P, Štrauch B et al (2017) Biochemical screening for nonadherence is associated with blood pressure reduction and improvement in adherence. Hypertension 70:1042–1048

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Donazzan L, Mahfoud F, Ewen S et al (2016) Effects of catheter-based renal denervation on cardiac sympathetic activity and innervation in patients with resistant hypertension. Clin Res Cardiol 105:364–371

    Article  PubMed  Google Scholar 

  83. Hering D, Marusic P, Walton AS et al (2014) Sustained sympathetic and blood pressure reduction 1 year after renal denervation in patients with resistant hypertension. Hypertension 64:118–124

    Article  PubMed  CAS  Google Scholar 

  84. Ewen S, Zivanovic I, Böhm M, Mahfoud F (2015) Catheter-based renal denervation for hypertension treatment: update 2015. Eur Heart J 37:930–933

    Google Scholar 

  85. Mahfoud F, Böhm M, Azizi M et al (2015) Proceedings from the European clinical consensus conference for renal denervation: considerations on future clinical trial design. Eur Heart J 36:2219–2227

    Article  PubMed  Google Scholar 

  86. Böhm M, Mahfoud F, Ukena C et al (2015) First report of the global SYMPLICITY registry on the effect of renal artery denervation in patients with uncontrolled hypertension. Hypertension 65:766–774

    Article  PubMed  Google Scholar 

  87. De Jager RL, Sanders MF, Bots ML et al (2016) Renal denervation in hypertensive patients not on blood pressure lowering drugs. Clin Res Cardiol 105:755–762

    Article  PubMed  PubMed Central  Google Scholar 

  88. Sharp ASP, Davies JE, Lobo MD et al (2016) Renal artery sympathetic denervation: observations from the UK experience. Clin Res Cardiol 105:544–552

    Article  PubMed  PubMed Central  Google Scholar 

  89. Bhatt DL, Kandzari DE, O’Neill WW et al (2014) A controlled trial of renal denervation for resistant hypertension. N Engl J Med 370:1393–1401

    Article  PubMed  CAS  Google Scholar 

  90. Pathak A, Ewen S, Fajadet J et al (2014) From symplicity HTN-3 to the renal denervation global registry: where do we stand and where should we go. EuroIntervention 10:21–24

    Article  PubMed  Google Scholar 

  91. Azizi M, Sapoval M, Gosse P et al (2015) Optimum and stepped care standardised antihypertensive treatment with or without renal denervation for resistant hypertension (DENERHTN): a multicentre, open-label, randomised controlled trial. Lancet 385:1957–1965

    Article  PubMed  Google Scholar 

  92. Ewen S, Meyer MR, Cremers B et al (2015) Blood pressure reductions following catheter-based renal denervation are not related to improvements in adherence to antihypertensive drugs measured by urine/plasma toxicological analysis. Clin Res Cardiol 104:1097–1105

    Article  PubMed  CAS  Google Scholar 

  93. Azizi M, Pereira H, Hamdidouche I et al (2016) Adherence to antihypertensive treatment and the blood pressure-lowering effects of renal denervation in the renal denervation for hypertension (DENERHTN) trial. Circulation 134:847–857

    Article  PubMed  CAS  Google Scholar 

  94. Kandzari DE, Kario K, Mahfoud F et al (2016) The SPYRAL HTN Global Clinical Trial Program: rationale and design for studies of renal denervation in the absence (SPYRAL HTN OFF-MED) and presence (SPYRAL HTN ON-MED) of antihypertensive medications. Am Heart J 171:82–91

    Article  PubMed  Google Scholar 

  95. Ewen S, Ukena C, Linz D et al (2015) Reduced effect of percutaneous renal denervation on blood pressure in patients with isolated systolic hypertension. Hypertension 65:193–199

    Article  PubMed  CAS  Google Scholar 

  96. Mahfoud F, Bakris G, Bhatt DL et al (2017) Reduced blood pressure-lowering effect of catheter-based renal denervation in patients with isolated systolic hypertension: Data from SYMPLICITY HTN-3 and the Global SYMPLICITY Registry. Eur Heart J 38:93–100

    Article  PubMed  Google Scholar 

  97. Mahfoud F, Tunev S, Ewen S et al (2015) Impact of lesion placement on efficacy and safety of catheter-based radiofrequency renal denervation. J Am Coll Cardiol 66:1766–1775

    Article  PubMed  Google Scholar 

  98. Townsend RR, Mahfoud F, Kandzari DE et al (2017) Catheter-based renal denervation in patients with uncontrolled hypertension in the absence of antihypertensive medications (SPYRAL HTN-OFF MED): a randomised, sham-controlled, proof-of-concept trial. Lancet 390:2160–2170

    Article  PubMed  Google Scholar 

  99. Kandzari DE, Böhm M, Mahfoud F et al (2018) Effect of renal denervation on blood pressure in the presence of antihypertensive drugs: 6-month efficacy and safety results from the SPYRAL HTN-ON MED proof-of-concept randomised trial. Lancet 6736:1–10

    Google Scholar 

  100. Azizi M, Schmieder RE, Mahfoud F et al (2018) Endovascular ultrasound renal denervation to treat hypertension (RADIANCE-HTN SOLO): a multicentre, international, single-blind, randomised, sham-controlled trial. Lancet 6736:1–11

    Google Scholar 

  101. Scheffers IJM, Kroon AA, Schmidli J et al (2010) Novel baroreflex activation therapy in resistant hypertension: results of a European multi-center feasibility study. J Am Coll Cardiol 56:1254–1258

    Article  PubMed  Google Scholar 

  102. De Leeuw PW, Bisognano JD, Bakris GL et al (2017) Sustained reduction ofbBlood pressure with baroreceptor activation therapy: results of the 6-year open follow-up. Hypertension 69:836–843

    Article  PubMed  Google Scholar 

  103. Ewen S, Böhm M, Mahfoud F (2017) Long-term follow-up of baroreflex activation therapy in resistant hypertension: Another piece of the puzzle? Hypertension 69:782–784

    Article  PubMed  CAS  Google Scholar 

  104. Lobo MD, Sobotka PA, Stanton A et al (2015) Central arteriovenous anastomosis for the treatment of patients with uncontrolled hypertension (the ROX CONTROL HTN study): a randomised controlled trial. Lancet 385:1634–1164

    Article  PubMed  Google Scholar 

  105. Ewen S, Lauder L, Böhm M, Mahfoud F (2018) Real-time left ventricular pressure-volume loops during percutaneous central arteriovenous anastomosis. Eur Heart J (Epub ahead of press)

  106. Lobo MD, Ott C, Sobotka PA et al (2017) Central iliac arteriovenous anastomosis for uncontrolled hypertension: one-year results from the ROX CONTROL HTN Trial. Hypertens (Dallas. Tex 1979) 70:1099–1105

    Article  CAS  Google Scholar 

  107. Spiering W, Williams B, Van der Heyden J et al (2017) Endovascular baroreflex amplification for resistant hypertension: a safety and proof-of-principle clinical study. Lancet 390:2655–2661

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Böhm.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wolf, M., Ewen, S., Mahfoud, F. et al. Hypertension: history and development of established and novel treatments. Clin Res Cardiol 107 (Suppl 2), 16–29 (2018). https://doi.org/10.1007/s00392-018-1299-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00392-018-1299-y

Keywords

Navigation