Skip to main content

Advertisement

Log in

Cardiac magnetic resonance assessment of central and peripheral vascular function in patients undergoing renal sympathetic denervation as predictor for blood pressure response

  • Original Paper
  • Published:
Clinical Research in Cardiology Aims and scope Submit manuscript

Abstract

Background

Most trials regarding catheter-based renal sympathetic denervation (RDN) describe a proportion of patients without blood pressure response. Recently, we were able to show arterial stiffness, measured by invasive pulse wave velocity (IPWV), seems to be an excellent predictor for blood pressure response. However, given the invasiveness, IPWV is less suitable as a selection criterion for patients undergoing RDN. Consequently, we aimed to investigate the value of cardiac magnetic resonance (CMR) based measures of arterial stiffness in predicting the outcome of RDN compared to IPWV as reference.

Methods

Patients underwent CMR prior to RDN to assess ascending aortic distensibility (AAD), total arterial compliance (TAC), and systemic vascular resistance (SVR). In a second step, central aortic blood pressure was estimated from ascending aortic area change and flow sequences and used to re-calculate total arterial compliance (cTAC). Additionally, IPWV was acquired.

Results

Thirty-two patients (24 responders and 8 non-responders) were available for analysis. AAD, TAC and cTAC were higher in responders, IPWV was higher in non-responders. SVR was not different between the groups. Patients with AAD, cTAC or TAC above median and IPWV below median had significantly better BP response. Receiver operating characteristic (ROC) curves predicting blood pressure response for IPWV, AAD, cTAC and TAC revealed areas under the curve of 0.849, 0.828, 0.776 and 0.753 (p = 0.004, 0.006, 0.021 and 0.035).

Conclusions

Beyond IPWV, AAD, cTAC and TAC appear as useful outcome predictors for RDN in patients with hypertension. CMR-derived markers of arterial stiffness might serve as non-invasive selection criteria for RDN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AAD:

Ascending aortic distensibility

AUC:

Area under the curve

ABPM:

Ambulatory blood pressure measurement

BP:

Blood pressure

CMR:

Cardiac magnetic resonance imaging

cTAC:

Central pressure total arterial compliance

IPP:

Invasive pulse pressure

IPWV:

Invasive pulse wave velocity

MRI:

Magnetic resonance imaging

RDN:

Renal sympathetic denervation

ROC:

Receiver operator characteristic

TAC:

Total arterial compliance

References

  1. Krum H, Schlaich M, Whitbourn R, Sobotka PA, Sadowski J, Bartus K, Kapelak B, Walton A, Sievert H, Thambar S, Abraham WT, Esler M (2009) Catheter-based renal sympathetic denervation for resistant hypertension: a multicentre safety and proof-of-principle cohort study. Lancet 373(9671):1275–1281. https://doi.org/10.1016/S0140-6736(09)60566-3

    Article  PubMed  Google Scholar 

  2. Desch S, Okon T, Heinemann D, Kulle K, Rohnert K, Sonnabend M, Petzold M, Muller U, Schuler G, Eitel I, Thiele H, Lurz P (2015) Randomized sham-controlled trial of renal sympathetic denervation in mild resistant hypertension. Hypertension 65(6):1202–1208. https://doi.org/10.1161/HYPERTENSIONAHA.115.05283

    Article  CAS  PubMed  Google Scholar 

  3. Azizi M, Sapoval M, Gosse P, Monge M, Bobrie G, Delsart P, Midulla M, Mounier-Vehier C, Courand PY, Lantelme P, Denolle T, Dourmap-Collas C, Trillaud H, Pereira H, Plouin PF, Chatellier G, Renal Denervation for Hypertension i (2015) Optimum and stepped care standardised antihypertensive treatment with or without renal denervation for resistant hypertension (DENERHTN): a multicentre, open-label, randomised controlled trial. Lancet 385(9981):1957–1965. https://doi.org/10.1016/S0140-6736(14)61942-5

    Article  PubMed  Google Scholar 

  4. Fengler K, Heinemann D, Okon T, Rohnert K, Stiermaier T, von Roder M, Besler C, Muller U, Hollriegel R, Schuler G, Desch S, Lurz P (2016) Renal denervation improves exercise blood pressure: insights from a randomized, sham-controlled trial. Clin Res Cardiol 105(7):592–600. https://doi.org/10.1007/s00392-015-0955-8

    Article  PubMed  Google Scholar 

  5. Bhatt DL, Kandzari DE, O’Neill WW, D’Agostino R, Flack JM, Katzen BT, Leon MB, Liu M, Mauri L, Negoita M, Cohen SA, Oparil S, Rocha-Singh K, Townsend RR, Bakris GL, Investigators SH- (2014) A controlled trial of renal denervation for resistant hypertension. N Engl J Med 370(15):1393–1401. https://doi.org/10.1056/NEJMoa1402670

    Article  CAS  PubMed  Google Scholar 

  6. Mahfoud F, Bohm M, Azizi M, Pathak A, Durand Zaleski I, Ewen S, Tsioufis K, Andersson B, Blankestijn PJ, Burnier M, Chatellier G, Gafoor S, Grassi G, Joner M, Kjeldsen SE, Luscher TF, Lobo MD, Lotan C, Parati G, Redon J, Ruilope L, Sudano I, Ukena C, van Leeuwen E, Volpe M, Windecker S, Witkowski A, Wijns W, Zeller T, Schmieder RE (2015) Proceedings from the European clinical consensus conference for renal denervation: considerations on future clinical trial design. Eur Heart J 36(33):2219–2227. https://doi.org/10.1093/eurheartj/ehv192

    Article  PubMed  Google Scholar 

  7. Townsend RR, Mahfoud F, Kandzari DE, Kario K, Pocock S, Weber MA, Ewen S, Tsioufis K, Tousoulis D, Sharp ASP, Watkinson AF, Schmieder RE, Schmid A, Choi JW, East C, Walton A, Hopper I, Cohen DL, Wilensky R, Lee DP, Ma A, Devireddy CM, Lea JP, Lurz PC, Fengler K, Davies J, Chapman N, Cohen SA, DeBruin V, Fahy M, Jones DE, Rothman M, Bohm M, investigators* SH-OMt (2017) Catheter-based renal denervation in patients with uncontrolled hypertension in the absence of antihypertensive medications (SPYRAL HTN-OFF MED): a randomised, sham-controlled, proof-of-concept trial. Lancet 390(10108):2160–2170. https://doi.org/10.1016/S0140-6736(17)32281-X

    Article  PubMed  Google Scholar 

  8. Fengler K, Rommel KP, Okon T, Schuler G, Lurz P (2016) Renal sympathetic denervation in therapy resistant hypertension—pathophysiological aspects and predictors for treatment success. World J Cardiol 8(8):436–446. https://doi.org/10.4330/wjc.v8.i8.436

    Article  PubMed  PubMed Central  Google Scholar 

  9. Laurent S, Boutouyrie P, Asmar R, Gautier I, Laloux B, Guize L, Ducimetiere P, Benetos A (2001) Aortic stiffness is an independent predictor of all-cause and cardiovascular mortality in hypertensive patients. Hypertension 37(5):1236–1241

    Article  CAS  PubMed  Google Scholar 

  10. Maroules CD, Khera A, Ayers C, Goel A, Peshock RM, Abbara S, King KS (2014) Cardiovascular outcome associations among cardiovascular magnetic resonance measures of arterial stiffness: the Dallas heart study. J Cardiovasc Magn Reson 16:33. https://doi.org/10.1186/1532-429X-16-33

    Article  PubMed  PubMed Central  Google Scholar 

  11. Pettersen KH, Bugenhagen SM, Nauman J, Beard DA, Omholt SW (2014) Arterial stiffening provides sufficient explanation for primary hypertension. PLoS Comput Biol 10(5):e1003634. https://doi.org/10.1371/journal.pcbi.1003634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kaess BM, Rong J, Larson MG, Hamburg NM, Vita JA, Levy D, Benjamin EJ, Vasan RS, Mitchell GF (2012) Aortic stiffness, blood pressure progression, and incident hypertension. JAMA 308(9):875–881. https://doi.org/10.1001/2012.jama.10503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ewen S, Ukena C, Linz D, Kindermann I, Cremers B, Laufs U, Wagenpfeil S, Schmieder RE, Bohm M, Mahfoud F (2015) Reduced effect of percutaneous renal denervation on blood pressure in patients with isolated systolic hypertension. Hypertension 65(1):193–199. https://doi.org/10.1161/HYPERTENSIONAHA.114.04336

    Article  CAS  PubMed  Google Scholar 

  14. Mahfoud F, Bakris G, Bhatt DL, Esler M, Ewen S, Fahy M, Kandzari D, Kario K, Mancia G, Weber M, Bohm M (2016) Reduced blood pressure-lowering effect of catheter-based renal denervation in patients with isolated systolic hypertension: data from SYMPLICITY HTN-3 and the global SYMPLICITY registry. Eur Heart J. https://doi.org/10.1093/eurheartj/ehw325

    Article  PubMed  PubMed Central  Google Scholar 

  15. Okon T, Rohnert K, Stiermaier T, Rommel KP, Muller U, Fengler K, Schuler G, Desch S, Lurz P (2016) Invasive aortic pulse wave velocity as a marker for arterial stiffness predicts outcome of renal sympathetic denervation. EuroIntervention 12(5):e684–692. https://doi.org/10.4244/EIJV12I5A110

    Article  PubMed  Google Scholar 

  16. Fengler K, Rommel KP, Hoellriegel R, Blazek S, Besler C, Desch S, Schuler G, Linke A, Lurz P (2017) Pulse wave velocity predicts response to renal denervation in isolated systolic hypertension. J Am Heart Assoc. https://doi.org/10.1161/JAHA.117.005879

    Article  PubMed  PubMed Central  Google Scholar 

  17. Stea F, Bozec E, Millasseau S, Khettab H, Boutouyrie P, Laurent S (2014) Comparison of the Complior Analyse device with Sphygmocor and Complior SP for pulse wave velocity and central pressure assessment. J Hypertens 32(4):873–880. https://doi.org/10.1097/HJH.0000000000000091

    Article  CAS  PubMed  Google Scholar 

  18. Eftekhari A, Mathiassen ON, Buus NH, Gotzsche O, Mulvany MJ, Christensen KL (2011) Disproportionally impaired microvascular structure in essential hypertension. J Hypertens 29(5):896–905. https://doi.org/10.1097/HJH.0b013e3283447a1c

    Article  CAS  PubMed  Google Scholar 

  19. Al-Naamani N, Chirinos JA, Zamani P, Ruthazer R, Paulus JK, Roberts KE, Barr RG, Lima JA, Bluemke DA, Kronmal R, Kawut SM (2016) Association of systemic arterial properties with right ventricular morphology: the multi-ethnic study of atherosclerosis (MESA)-right ventricle study. J Am Heart Assoc. https://doi.org/10.1161/JAHA.116.004162

    Article  PubMed  PubMed Central  Google Scholar 

  20. Quail MA, Steeden JA, Knight D, Segers P, Taylor AM, Muthurangu V (2014) Development and validation of a novel method to derive central aortic systolic pressure from the MR aortic distension curve. J Magn Reson Imaging 40(5):1064–1070. https://doi.org/10.1002/jmri.24471

    Article  PubMed  Google Scholar 

  21. Quail MA, Short R, Pandya B, Steeden JA, Khushnood A, Taylor AM, Segers P, Muthurangu V (2017) Abnormal wave reflections and left ventricular hypertrophy late after coarctation of the aorta repair. Hypertension 69(3):501–509. https://doi.org/10.1161/HYPERTENSIONAHA.116.08763

    Article  CAS  PubMed  Google Scholar 

  22. Chemla D, Hebert JL, Coirault C, Zamani K, Suard I, Colin P, Lecarpentier Y (1998) Total arterial compliance estimated by stroke volume-to-aortic pulse pressure ratio in humans. Am J Physiol 274(2 Pt 2):H500–505

    CAS  PubMed  Google Scholar 

  23. Martinez-Lemus LA (2012) The dynamic structure of arterioles. Basic Clin Pharmacol Toxicol 110(1):5–11. https://doi.org/10.1111/j.1742-7843.2011.00813.x

    Article  CAS  PubMed  Google Scholar 

  24. Hypertension EETFftMoA (2013) 2013 Practice guidelines for the management of arterial hypertension of the European Society of Hypertension (ESH) and the European Society of Cardiology (ESC): ESH/ESC Task Force for the Management of Arterial Hypertension. J Hypertens 31(10):1925–1938. https://doi.org/10.1097/HJH.0b013e328364ca4c

    Article  CAS  Google Scholar 

  25. Steeden JA, Atkinson D, Hansen MS, Taylor AM, Muthurangu V (2011) Rapid flow assessment of congenital heart disease with high-spatiotemporal-resolution gated spiral phase-contrast MR imaging. Radiology 260(1):79–87. https://doi.org/10.1148/radiol.11101844

    Article  PubMed  PubMed Central  Google Scholar 

  26. Meinders JM, Hoeks AP (2004) Simultaneous assessment of diameter and pressure waveforms in the carotid artery. Ultrasound Med Biol 30(2):147–154. https://doi.org/10.1016/j.ultrasmedbio.2003.10.014

    Article  PubMed  Google Scholar 

  27. Powalowski T, Pensko B (1988) A noninvasive ultrasonic method for the elasticity evaluation of the carotid arteries and its application in the diagnosis of the cerebro-vascular system. Arch Acoust 13(1–2):109–126

    Google Scholar 

  28. Kelly R, Fitchett D (1992) Noninvasive determination of aortic input impedance and external left-ventricular power output—a validation and repeatability study of a new technique. J Am Coll Cardiol 20(4):952–963

    Article  CAS  PubMed  Google Scholar 

  29. Van Bortel LM, Balkestein EJ, van der Heijden-Spek JJ, Vanmolkot FH, Staessen JA, Kragten JA, Vredeveld JW, Safar ME, Boudier HAS, Hoeks AP (2001) Non-invasive assessment of local arterial pulse pressure: comparison of applanation tonometry and echo-tracking. J Hypertens 19(6):1037–1044. https://doi.org/10.1097/00004872-200106000-00007

    Article  PubMed  Google Scholar 

  30. Muthurangu V, Atkinson D, Sermesant M, Miquel ME, Hegde S, Johnson R, Andriantsimiavona R, Taylor AM, Baker E, Tulloh R, Hill D, Razavi RS (2005) Measurement of total pulmonary arterial compliance using invasive pressure monitoring and MR flow quantification during MR-guided cardiac catheterization. Am J Physiol Heart Circ Physiol 289(3):H1301–1306. https://doi.org/10.1152/ajpheart.00957.2004

    Article  CAS  PubMed  Google Scholar 

  31. O’Brien E, Parati G, Stergiou G, Asmar R, Beilin L, Bilo G, Clement D, de la Sierra A, de Leeuw P, Dolan E, Fagard R, Graves J, Head GA, Imai Y, Kario K, Lurbe E, Mallion JM, Mancia G, Mengden T, Myers M, Ogedegbe G, Ohkubo T, Omboni S, Palatini P, Redon J, Ruilope LM, Shennan A, Staessen JA, vanMontfrans G, Verdecchia P, Waeber B, Wang J, Zanchetti A, Zhang Y, European Society of Hypertension Working Group on Blood Pressure M (2013) European Society of Hypertension position paper on ambulatory blood pressure monitoring. J Hypertens 31(9):1731–1768. https://doi.org/10.1097/HJH.0b013e328363e964

    Article  CAS  PubMed  Google Scholar 

  32. Parati G, Stergiou G, O’Brien E, Asmar R, Beilin L, Bilo G, Clement D, de la Sierra A, de Leeuw P, Dolan E, Fagard R, Graves J, Head GA, Imai Y, Kario K, Lurbe E, Mallion JM, Mancia G, Mengden T, Myers M, Ogedegbe G, Ohkubo T, Omboni S, Palatini P, Redon J, Ruilope LM, Shennan A, Staessen JA, vanMontfrans G, Verdecchia P, Waeber B, Wang J, Zanchetti A, Zhang Y, European Society of Hypertension Working Group on Blood Pressure M, Cardiovascular V (2014) European Society of Hypertension practice guidelines for ambulatory blood pressure monitoring. J Hypertens 32(7):1359–1366. https://doi.org/10.1097/HJH.0000000000000221

    Article  CAS  PubMed  Google Scholar 

  33. Hulsen HT, Nijdam ME, Bos WJ, Uiterwaal CS, Oren A, Grobbee DE, Bots M (2006) Spurious systolic hypertension in young adults; prevalence of high brachial systolic blood pressure and low central pressure and its determinants. J Hypertens 24(6):1027–1032. https://doi.org/10.1097/01.hjh.0000226191.36558.9c

    Article  CAS  PubMed  Google Scholar 

  34. Mitchell GF, Lacourciere Y, Ouellet JP, Izzo JL Jr, Neutel J, Kerwin LJ, Block AJ, Pfeffer MA (2003) Determinants of elevated pulse pressure in middle-aged and older subjects with uncomplicated systolic hypertension: the role of proximal aortic diameter and the aortic pressure–flow relationship. Circulation 108(13):1592–1598. https://doi.org/10.1161/01.CIR.0000093435.04334.1F

    Article  PubMed  Google Scholar 

  35. O’Rourke MF, Nichols WW (2005) Aortic diameter, aortic stiffness, and wave reflection increase with age and isolated systolic hypertension. Hypertension 45(4):652–658. https://doi.org/10.1161/01.HYP.0000153793.84859.b8

    Article  PubMed  Google Scholar 

  36. Segers P, Mahieu D, Kips J, Rietzschel E, De Buyzere M, De Bacquer D, Bekaert S, De Backer G, Gillebert T, Verdonck P, Van Bortel L, Asklepios i (2009) Amplification of the pressure pulse in the upper limb in healthy, middle-aged men and women. Hypertension 54(2):414–420. https://doi.org/10.1161/HYPERTENSIONAHA.109.133009

    Article  CAS  PubMed  Google Scholar 

  37. O’Rourke MF, Hashimoto J (2007) Mechanical factors in arterial aging: a clinical perspective. J Am Coll Cardiol 50(1):1–13. https://doi.org/10.1016/j.jacc.2006.12.050

    Article  PubMed  Google Scholar 

  38. DiBona GF (2005) Physiology in perspective: the wisdom of the body. Neural control of the kidney. Am J Physiol Regul Integr Comp Physiol 289(3):R633–641. https://doi.org/10.1152/ajpregu.00258.2005

    Article  CAS  PubMed  Google Scholar 

  39. Reinecke M, Forssmann WG (1988) Neuropeptide (neuropeptide Y, neurotensin, vasoactive intestinal polypeptide, substance P, calcitonin gene-related peptide, somatostatin) immunohistochemistry and ultrastructure of renal nerves. Histochemistry 89(1):1–9

    Article  CAS  PubMed  Google Scholar 

  40. Krum H, Sobotka P, Mahfoud F, Bohm M, Esler M, Schlaich M (2011) Device-based antihypertensive therapy: therapeutic modulation of the autonomic nervous system. Circulation 123(2):209–215. https://doi.org/10.1161/CIRCULATIONAHA.110.971580

    Article  PubMed  Google Scholar 

  41. Ewen S, Cremers B, Meyer MR, Donazzan L, Kindermann I, Ukena C, Helfer AG, Maurer HH, Laufs U, Grassi G, Bohm M, Mahfoud F (2015) Blood pressure changes after catheter-based renal denervation are related to reductions in total peripheral resistance. J Hypertens 33(12):2519–2525. https://doi.org/10.1097/HJH.0000000000000752

    Article  CAS  PubMed  Google Scholar 

  42. Christensen KL, Buus NH (2012) Dissociation of blood pressure and resistance artery structure: potential clinical implications. Basic Clin Pharmacol Toxicol 110(1):73–79. https://doi.org/10.1111/j.1742-7843.2011.00799.x

    Article  CAS  PubMed  Google Scholar 

  43. Yano Y, Lloyd-Jones DM (2016) Isolated systolic hypertension in young and middle-aged adults. Curr Hypertens Rep 18(11):78. https://doi.org/10.1007/s11906-016-0686-x

    Article  PubMed  Google Scholar 

  44. Kandzari DE, Kario K, Mahfoud F, Cohen SA, Pilcher G, Pocock S, Townsend R, Weber MA, Bohm M (2016) The SPYRAL HTN global clinical trial program: rationale and design for studies of renal denervation in the absence (SPYRAL HTN OFF-MED) and presence (SPYRAL HTN ON-MED) of antihypertensive medications. Am Heart J 171(1):82–91. https://doi.org/10.1016/j.ahj.2015.08.021

    Article  PubMed  Google Scholar 

  45. Stoiber L, Mahfoud F, Zamani SM, Lapinskas T, Bohm M, Ewen S, Kulenthiran S, Schlaich MP, Esler MD, Hammer T, Stensaeth KH, Pieske B, Dreysse S, Fleck E, Kuhne T, Kelm M, Stawowy P, Kelle S (2018) Renal sympathetic denervation restores aortic distensibility in patients with resistant hypertension: data from a multi-center trial. Clin Res Cardiol. https://doi.org/10.1007/s00392-018-1229-z

    Article  PubMed  PubMed Central  Google Scholar 

  46. Ohyama Y, Teixido-Tura G, Ambale-Venkatesh B, Noda C, Chugh AR, Liu CY, Redheuil A, Stacey RB, Dietz H, Gomes AS, Prince MR, Evangelista A, Wu CO, Hundley WG, Bluemke DA, Lima JA (2016) Ten-year longitudinal change in aortic stiffness assessed by cardiac MRI in the second half of the human lifespan: the multi-ethnic study of atherosclerosis. Eur Heart J Cardiovasc Imaging 17(9):1044–1053. https://doi.org/10.1093/ehjci/jev332

    Article  PubMed  PubMed Central  Google Scholar 

  47. Wentland AL, Grist TM, Wieben O (2014) Review of MRI-based measurements of pulse wave velocity: a biomarker of arterial stiffness. Cardiovasc Diagn Ther 4(2):193–206. https://doi.org/10.3978/j.issn.2223-3652.2014.03.04

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Lurz.

Ethics declarations

Conflict of interest

PL is consultant to ReCor Medical and Medtronic. The other authors declare that they have no competing interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

392_2018_1267_MOESM1_ESM.tif

Supplemental Figure 1 Bland-Altman plot for inter-observer (A) and intra-observer (B) variability for stroke volume and ascending aortic distensibility (AAD) measurements (TIF 585 KB)

392_2018_1267_MOESM2_ESM.tif

Supplemental Figure 2 Different markers of vascular stiffness by tertiles and change in daytime systolic blood pressure (in mmHg) 3 months after renal denervation: Ascending aortic distensibility (A), invasive pulse wave velocity (B), peripheral pressure total arterial compliance (C), central pressure total arterial compliance (D) and systemic vascular resistance (E). Error bars indicate 95% confidence intervals (TIF 957 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fengler, K., Rommel, KP., Blazek, S. et al. Cardiac magnetic resonance assessment of central and peripheral vascular function in patients undergoing renal sympathetic denervation as predictor for blood pressure response. Clin Res Cardiol 107, 945–955 (2018). https://doi.org/10.1007/s00392-018-1267-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00392-018-1267-6

Keywords

Navigation