Clinical Research in Cardiology

, Volume 107, Issue 7, pp 611–615 | Cite as

Flow-mediated dilation, nitroglycerin-mediated dilation and their ratio predict successful renal denervation in mild resistant hypertension

  • Martin Steinmetz
  • Dominik Nelles
  • Jutta Weisser-Thomas
  • Christian Schaefer
  • Georg Nickenig
  • Nikos Werner
Letter to the Editors


Arterial hypertension is a major cardiovascular risk factor with a prevalence of about 30% in developed countries [1]. Its effective treatment is essential to prevent complications such as myocardial infarction, stroke, or peripheral artery disease [2, 3]. 10–20% of hypertensive patients are classified as resistant hypertension, which is defined as hypertension treated with a minimum of three antihypertensive drugs at optimal dose, but still no substantial success in normalizing ambulatory blood pressure [4, 5]. Sympathetic nervous activity is one mechanism that underlies resistant hypertension [6]. One treatment option for patients with resistant hypertension is catheter-based, renal artery denervation (RDN), which has been investigated in a variety of clinical trials in the past 10 years with constant confirmation of technical feasibility, but mixed results in terms of RDN-associated blood pressure reduction. The eligibility of patients for RDN strongly depends on sufficient...


Compliance with ethical standards

Conflict of interest

G.N. and N.W. received honoraria from Medtronic. M.S. and D.N. have no conflicts of interest.


  1. 1.
    Cai A, Feng Y, Zhou Y (2017) A comprehensive review of an unmet public health issue: resistant hypertension. Clin Exp Hypertens 39:101–107. CrossRefPubMedGoogle Scholar
  2. 2.
    Cecchi E, Parodi G, Fatucchi S et al (2016) Prevalence of thrombophilic disorders in takotsubo patients: the (ThROmbophylia in TAkotsubo cardiomyopathy) TROTA study. Clin Res Cardiol 105:717–726. CrossRefPubMedGoogle Scholar
  3. 3.
    Vegter EL, Ovchinnikova ES, van Veldhuisen DJ et al (2017) Low circulating microRNA levels in heart failure patients are associated with atherosclerotic disease and cardiovascular-related rehospitalizations. Clin Res Cardiol 106:598–609. CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Völz S, Svedlund S, Andersson B et al (2017) Coronary flow reserve in patients with resistant hypertension. Clin Res Cardiol 106:151–157. CrossRefPubMedGoogle Scholar
  5. 5.
    Bhatt DL, Kandzari DE, O’Neill WW et al (2014) A controlled trial of renal denervation for resistant hypertension. N Engl J Med 370:1393–1401. CrossRefPubMedGoogle Scholar
  6. 6.
    Fengler K, Rommel KP, Okon T et al (2016) Renal sympathetic denervation in therapy resistant hypertension—pathophysiological aspects and predictors for treatment success. World J Cardiol 8:436–446. CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Tsioufis C, Ziakas A, Dimitriadis K et al (2017) Erratum to: Blood pressure response to catheter-based renal sympathetic denervation in severe resistant hypertension: data from the Greek Renal Denervation Registry (Clin Res Cardiol, 10.1007/s00392-016-1056-z). Clin Res Cardiol 106:392. CrossRefPubMedGoogle Scholar
  8. 8.
    Kulenthiran S, Ewen S, Böhm M, Mahfoud F (2017) Hypertension up to date: SPRINT to SPYRAL. Clin Res Cardiol 106:475–484. CrossRefPubMedGoogle Scholar
  9. 9.
    Ott C, Kopp C, Dahlmann A et al (2018) Impact of renal denervation on tissue Na+ content in treatment-resistant hypertension. Clin Res Cardiol 107:42–48. CrossRefPubMedGoogle Scholar
  10. 10.
    Persu A, Jin Y, Baelen M et al (2014) Eligibility for renal denervation: experience at 11 European expert centers. Hypertension 63:1319–1325. CrossRefPubMedGoogle Scholar
  11. 11.
    Prado JC, Salado D, Ruilope LM, Segura J (2016) Second denervation in a patient with resistant hypertension. Clin Res Cardiol 105:880–883. CrossRefPubMedGoogle Scholar
  12. 12.
    Lu D, Wang K, Liu Q et al (2016) Reductions of left ventricular mass and atrial size following renal denervation: a meta-analysis. Clin Res Cardiol 105:648–656. CrossRefPubMedGoogle Scholar
  13. 13.
    Sharp ASP, Davies JE, Lobo MD et al (2016) Renal artery sympathetic denervation: observations from the UK experience. Clin Res Cardiol 105:544–552. CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Fengler K, Heinemann D, Okon T et al (2016) Renal denervation improves exercise blood pressure: insights from a randomized, sham-controlled trial. Clin Res Cardiol 105:592–600. CrossRefPubMedGoogle Scholar
  15. 15.
    Donazzan L, Mahfoud F, Ewen S et al (2016) Effects of catheter-based renal denervation on cardiac sympathetic activity and innervation in patients with resistant hypertension. Clin Res Cardiol 105:364–371. CrossRefPubMedGoogle Scholar
  16. 16.
    Schumacher K, Dagres N, Hindricks G et al (2017) Characteristics of PR interval as predictor for atrial fibrillation: association with biomarkers and outcomes. Clin Res Cardiol 106:767–775. CrossRefPubMedGoogle Scholar
  17. 17.
    Townsend RR, Mahfoud F, Kandzari DE et al (2017) Catheter-based renal denervation in patients with uncontrolled hypertension in the absence of antihypertensive medications (SPYRAL HTN-OFF MED): a randomised, sham-controlled, proof-of-concept trial. Lancet. CrossRefPubMedGoogle Scholar
  18. 18.
    Mahfoud F, Schmieder RE, Azizi M et al (2017) Proceedings from the 2nd European clinical consensus conference for device-based therapies for hypertension: State of the art and considerations for the future. Eur Heart J 38:3272–3281a. CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Hijmering ML, Stroes ESG, Olijhoek J et al (2002) Sympathetic activation markedly reduces endothelium-dependent, flow-mediated vasodilation. J Am Coll Cardiol 39:683–688. CrossRefPubMedGoogle Scholar
  20. 20.
    Mueller C, Wodack K, Twelker K et al (2011) Darbepoetin improves endothelial function and increases circulating endothelial progenitor cell number in patients with coronary artery disease. Heart 97:1474–1478. CrossRefPubMedGoogle Scholar
  21. 21.
    Gosse P, Cremer A, Pereira H et al (2017) Twenty-four-hour blood pressure monitoring to predict and assess impact of renal denervation. Hypertension. CrossRefPubMedGoogle Scholar
  22. 22.
    Wang Y (2014) Is isolated systolic hypertension an indication for renal denervation? Front Physiol 5:1393–1401. CrossRefGoogle Scholar
  23. 23.
    Eikelis N, Hering D, Marusic P et al (2015) The effect of renal denervation on endothelial function and inflammatory markers in patients with resistant hypertension. Int J Cardiol 188:96–98. CrossRefPubMedGoogle Scholar
  24. 24.
    Dörr O, Liebetrau C, Möllmann H et al (2014) Soluble fms-like tyrosine kinase-1 and endothelial adhesion molecules (Intercellular cell adhesion molecule-1 and vascular cell adhesion molecule-1) as predictive markers for blood pressure reduction after renal sympathetic denervation. Hypertension 63:984–990. CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Medizinische Klinik IIUniversitätsklinikum BonnBonnGermany
  2. 2.Westdeutsches Herz- und Gefäßzentrum, Klinik für Kardiologie und AngiologieUniversitätsklinikum EssenEssenGermany

Personalised recommendations