Advertisement

Clinical Research in Cardiology

, Volume 107, Issue 6, pp 507–516 | Cite as

Patient-specific registration of 3D CT angiography (CTA) with X-ray fluoroscopy for image fusion during transcatheter aortic valve implantation (TAVI) increases performance of the procedure

  • I. Vernikouskaya
  • W. Rottbauer
  • J. Seeger
  • B. Gonska
  • V. Rasche
  • Jochen Wöhrle
Original Paper

Abstract

Objectives

The aim of this study was to adapt patient-specifically a co-registration procedure for image fusion (IF) of a pre-interventional CT dataset with real-time X-ray (XR) fluoroscopy during transfemoral transcatheter aortic valve implantation (TAVI), enabling improved performance of the procedure.

Background

The ability to use 3D models of the respective anatomies to complement the anatomic information obtained by XR fluoroscopy and provide a greater degree of real-time anatomical guidance holds great potential for complex cardiac interventions, especially for TAVI procedures with cerebral protection.

Methods

Initial registration of two datasets was performed during the femoral puncture and sheath introduction using routinely acquired arteriographies. On-time refinement of the co-registration was then performed during the on-going procedure avoiding additional angiograms for the co-registration. Performance of the method was evaluated quantitatively in terms of procedural characteristics and clinical events.

Results

Significant reduction of the radiation dose [51 (42–55) vs. 64 (49–81) Gy cm2, p = 0.032] and contrast agent (CA) volume [80 (50–95) vs. 100 (80–110) ml, p = 0.010] was achieved with the optimized approach as compared to the control group without IF, with simultaneous decrease of procedural [48 (41–58) vs. 61 (53–67) min, p = 0.002] and fluoroscopy times [14.8 (12.7–18.5) vs. 17.8 (14.3–19.4), p = 0.108].

Conclusions

In this proof-of-concept study we have demonstrated a novel co-registration approach for IF during TAVI not requiring any additional CA or XR scan. We have evaluated its potential benefit with the strong focus on guiding the femoral puncture, placement of the double-filter cerebral embolic protection device, and deployment of the valve prosthesis. We achieved improved performance and safety of the procedure with the introduced approach.

Keywords

Image-based intervention guidance Image fusion Novel co-registration approach CT angiography Double-filter cerebral protection system TAVI 

Notes

Acknowledgements

The authors would like to thank Dr. Horst Brunner (Dept. Radiology, Ulm University Medical Center) for ongoing support in CT data acquisition and protocol optimization.

Compliance with ethical standards

Conflict of interest

On behalf of all authors, the corresponding author states that there are no relationships that could be construed as a conflict of interest.

Ethical approval

All procedures performed in study involving human participants were approved by the local institution’s ethics committee.

References

  1. 1.
    Sánchez Y, Anvari A, Samir AE, Arellano RS, Prabhakar AM, Uppot RN (2017) Navigational guidance and ablation planning tools for interventional radiology. Curr Probl Diagn Radiol 46(3):225–233CrossRefPubMedGoogle Scholar
  2. 2.
    Schwein A, Chinnadurai P, Shah DJ, Lumsden AB, Bechara CF, Bismuth J (2017) Feasibility of three-dimensional magnetic resonance angiography-fluoroscopy image fusion technique in guiding complex endovascular aortic procedures in patients with renal insufficiency. J Vasc Surg 65(5):1440–1452CrossRefPubMedGoogle Scholar
  3. 3.
    Ierardi AM, Duka E, Radaelli A, Rivolta N, Piffaretti G, Carrafiello G (2015) Fusion of CT angiography or MR angiography with unenhanced CBCT and fluoroscopy guidance in endovascular treatments of aorto-iliac steno-occlusion: technical note on a preliminary experience. Cardiovasc Intervent Radiol 39(1):111–116CrossRefPubMedGoogle Scholar
  4. 4.
    Sailer AM, de Haan MW, Peppelenbosch AG, Jacobs MJ, Wildberger JE, Schurink GWH (2014) CTA with fluoroscopy image fusion guidance in endovascular complex aortic aneurysm repair. Eur J Vasc Endovasc Surg 47(4):349–356CrossRefPubMedGoogle Scholar
  5. 5.
    McNally MM, Scali ST, Feezor RJ, Neal D, Huber TS, Beck AW (2015) Three dimensional fusion CT decreases radiation exposure, procedure time and contrast use during fenestrated endovascular aortic repair. J Vasc Surg 61(2):309–316CrossRefPubMedGoogle Scholar
  6. 6.
    Krishnaswamy A, Tuzcu EM, Kapadia SR (2015) Integration of MDCT and fluoroscopy using C-arm computed tomography to guide structural cardiac interventions in the cardiac catheterization laboratory. Catheter Cardiovasc Interv 85(1):139–147CrossRefPubMedGoogle Scholar
  7. 7.
    Movassaghi B, Rasche V, Grass M, Viergever MA, Niessen WJ (2004) A quantitative analysis of 3-D coronary modeling from two or more projection images. IEEE Trans Med Imaging 23(12):1517–1531CrossRefPubMedGoogle Scholar
  8. 8.
    Vernikouskaya I, Rottbauer W, Gonska B, Rodewald C, Seeger J, Rasche V, Wöhrle J (2017) Image-guidance for transcatheter aortic valve implantation (TAVI) and cerebral embolic protection. Int J Cardiol 249:90–95CrossRefPubMedGoogle Scholar
  9. 9.
    Panigrahy A, Caruthers SD, Krejza J, Barnes PD, Faddoul SG, Sleeper LA et al (2000) Registration of three-dimensional MR and CT studies of the cervical spine. Am J Neuroradiol 21(2):282–289PubMedGoogle Scholar
  10. 10.
    Auffret V, Lefevre T, Van Belle E, Eltchaninoff H, Iung B, Koning R et al (2017) Temporal trends in transcatheter aortic valve replacement in France: FRANCE 2 to FRANCE TAVI. J Am Coll Cardiol 70(1):42–55CrossRefPubMedGoogle Scholar
  11. 11.
    Thourani VH, Kodali S, Makkar RR, Herrmann HC, Williams M, Babaliaros V et al (2016) Transcatheter aortic valve replacement versus surgical valve replacement in intermediate-risk patients: a propensity score analysis. Lancet 387(10034):2218–2225CrossRefPubMedGoogle Scholar
  12. 12.
    Doenst T, Strüning C, Moschovas A, Gonzalez-Lopez D, Essa Y, Kirov H et al (2016) Cardiac surgery 2015 reviewed. Clin Res Cardiol 105(10):801–814CrossRefPubMedGoogle Scholar
  13. 13.
    Gaede L, Blumenstein J, Kim W-K, Liebetrau C, Dörr O, Nef H et al (2017) Trends in aortic valve replacement in Germany in 2015: transcatheter versus isolated surgical aortic valve repair. Clin Res Cardiol 106(6):411–419CrossRefPubMedGoogle Scholar
  14. 14.
    Ramlawi B, Anaya-Ayala JE, Reardon MJ (2012) Transcatheter aortic valve replacement (TAVR): access planning and strategies. Methodist DeBakey Cardiovasc J 8(2):22–25CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Seidler T, Hünlich M, Puls M, Hasenfuß G, Jacobshagen C (2017) Feasibility and outcomes of interventional treatment for vascular access site complications following transfemoral aortic valve implantation. Clin Res Cardiol 106(3):183–191CrossRefPubMedGoogle Scholar
  16. 16.
    Thirumala PD, Nguyen FD, Mehta A, Schindler J, Mulukutla S, Jeevanantham V et al (2017) Perioperative stroke, in-hospital mortality, and postoperative morbidity following transcatheter aortic valve implantation: a nationwide study. J Clin Neurol 13(4):351–358CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Altisent OA-J, Ferreira-Gonzalez I, Marsal JR, Ribera A, Auger C, Ortega G et al (2016) Neurological damage after transcatheter aortic valve implantation compared with surgical aortic valve replacement in intermediate risk patients. Clin Res Cardiol 105(6):508–517CrossRefGoogle Scholar
  18. 18.
    Jobanputra Y, Jones BM, Mohananey D, Fatima B, Kandregula K, Kapadia S (2017) Cerebral protection devices for transcatheter aortic valve replacement. Expert Rev Med Devices 14(7):529–543CrossRefPubMedGoogle Scholar
  19. 19.
    Bernhardt P, Rodewald C, Seeger J, Gonska B, Buckert D, Radermacher M et al (2016) Non-contrast-enhanced magnetic resonance angiography is equal to contrast-enhanced multislice computed tomography for correct aortic sizing before transcatheter aortic valve implantation. Clin Res Cardiol 105(3):273–278CrossRefPubMedGoogle Scholar
  20. 20.
    Kim W-K, Liebetrau C, Linden A van, Blumenstein J, Gaede L, Hamm CW et al (2016) Myocardial injury associated with transcatheter aortic valve implantation (TAVI). Clin Res Cardiol 105(5):379–387CrossRefPubMedGoogle Scholar
  21. 21.
    Karambatsakidou A, Omar A, Chehrazi B, Rück A, Scherp Nilsson J, Fransson A (2016) SKIN dose, effective dose and related risk in transcatheter aortic valve implantation (TAVI) procedures: is the cancer risk acceptable for younger patients? Radiat Prot Dosimetry 169(1–4):225–231CrossRefPubMedGoogle Scholar
  22. 22.
    Möllmann H, Bestehorn K, Bestehorn M, Papoutsis K, Fleck E, Ertl G et al (2016) In-hospital outcome of transcatheter vs. surgical aortic valve replacement in patients with aortic valve stenosis: complete dataset of patients treated in 2013 in Germany. Clin Res Cardiol 105(6):553–559CrossRefPubMedGoogle Scholar
  23. 23.
    Gülker J-E, Schott P, Katoh M, Bufe A (2016) Case report: Cerebral stentretreiver thrombectomy of an embolized valve fragment after valve in valve TAVI. Clin Res Cardiol 105(4):372–375CrossRefPubMedGoogle Scholar
  24. 24.
    Kim W-K, Meyer A, Möllmann H, Rolf A, Möllmann S, Blumenstein J et al (2016) Cyclic changes in area- and perimeter-derived effective dimensions of the aortic annulus measured with multislice computed tomography and comparison with metric intraoperative sizing. Clin Res Cardiol 105(7):622–629CrossRefPubMedGoogle Scholar
  25. 25.
    Kim W-K, Blumenstein J, Liebetrau C, Rolf A, Gaede L, Van Linden A et al (2017) Comparison of outcomes using balloon-expandable versus self-expanding transcatheter prostheses according to the extent of aortic valve calcification. Clin Res Cardiol 106(12):995–1004CrossRefPubMedGoogle Scholar
  26. 26.
    Wöhrle J, Gonska B, Rodewald C, Trepte U, Koch S, Scharnbeck D et al (2015) Transfemoral aortic valve implantation with the repositionable Lotus valve compared with the balloon-expandable Edwards Sapien 3 valve. Int J Cardiol 195:171–175CrossRefPubMedGoogle Scholar
  27. 27.
    Gonska B, Seeger J, Rodewald C, Scharnbeck D, Rottbauer W, Wöhrle J (2016) Transfemoral valve-in-valve implantation for degenerated bioprosthetic aortic valves using the new balloon-expandable Edwards Sapien 3 valve. Catheter Cardiovasc Interv 88(4):636–643CrossRefPubMedGoogle Scholar
  28. 28.
    Wöhrle J, Gonska B, Rodewald C, Seeger J, Scharnbeck D, Rottbauer W (2016) Transfemoral aortic valve implantation with the new Edwards Sapien 3 valve for treatment of severe aortic stenosis—impact of valve size in a single center experience. PLOS ONE 11(3):e0151247CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Gonska B, Seeger J, Keßler M, von Keil A, Rottbauer W, Wöhrle J (2017) Predictors for permanent pacemaker implantation in patients undergoing transfemoral aortic valve implantation with the Edwards Sapien 3 valve. Clin Res Cardiol 106(8):590–597CrossRefPubMedGoogle Scholar
  30. 30.
    Kappetein AP, Head SJ, Généreux P, Piazza N, van Mieghem NM, Blackstone EH et al (2012) Updated standardized endpoint definitions for transcatheter aortic valve implantation: the valve academic research consortium-2 consensus document (VARC-2). Eur J Cardiothorac Surg 42(5):S45-60CrossRefPubMedGoogle Scholar
  31. 31.
    Plank F, Friedrich G, Bartel T, Mueller S, Bonaros N, Heinz A et al (2012) Benefits of high-pitch 128-slice dual-source computed tomography for planning of transcatheter aortic valve implantation. Ann Thorac Surg 94(6):1961–1966CrossRefPubMedGoogle Scholar
  32. 32.
    Schmermund A, Marwan M, Hausleiter J, Barth S, Bruder O, Kerber S et al (2017) Declining radiation dose of coronary computed tomography angiography: German cardiac CT registry experience 2009–2014. Clin Res Cardiol 106(11):905–912CrossRefPubMedGoogle Scholar
  33. 33.
    Ochs MM, Siepen FA dem, Fritz T, Andre F, Gitsioudis G, Korosoglou G et al (2017) Limits of the possible: diagnostic image quality in coronary angiography with third-generation dual-source CT. Clin Res Cardiol 106(7):485–492CrossRefPubMedGoogle Scholar
  34. 34.
    John M, Liao R, Zheng Y, Nöttling A, Boese J, Kirschstein U et al (2010) System to guide transcatheter aortic valve implantations based on interventional C-arm CT imaging. Med Image Comput Comput Assist Interv 13(Pt 1):375–382PubMedGoogle Scholar
  35. 35.
    Briguori C, Tavano D, Colombo A (2003) Contrast agent-associated nephrotoxicity. Prog Cardiovasc Dis 45(6):493–503CrossRefPubMedGoogle Scholar
  36. 36.
    Lu Y, Sun Y, Liao R, Ong SH (2014) A pre-operative CT and non-contrast-enhanced C-arm CT registration framework for trans-catheter aortic valve implantation. Comput Med Imaging Graph 38(8):683–695CrossRefPubMedGoogle Scholar
  37. 37.
    Lauterbach M, Hauptmann KE (2016) Reducing patient radiation dose with image noise reduction technology in transcatheter aortic valve procedures. Am J Cardiol 117(5):834–838CrossRefPubMedGoogle Scholar
  38. 38.
    Miller DL, Balter S, Schueler BA, Wagner LK, Strauss KJ, Vañó E (2010) Clinical radiation management for fluoroscopically guided interventional procedures. Radiology 257(2):321–332CrossRefPubMedGoogle Scholar
  39. 39.
    Chambers CE, Fetterly KA, Holzer R, Lin P-JP, Blankenship JC, Balter S et al (2011) Radiation safety program for the cardiac catheterization laboratory. Catheter Cardiovasc Interv 77(4):546–556CrossRefPubMedGoogle Scholar
  40. 40.
    Hertault A, Maurel B, Midulla M, Bordier C, Desponds L, Saeed Kilani M et al (2015) Editor’s choice—minimizing radiation exposure during endovascular procedures: basic knowledge, literature review, and reporting standards. Eur J Vasc Endovasc Surg 50(1):21–36CrossRefPubMedGoogle Scholar
  41. 41.
    Thourani VH, Forcillo J, Beohar N, Doshi D, Parvataneni R, Ayele GM et al (2016) Impact of preoperative chronic kidney disease in 2,531 high-risk and inoperable patients undergoing transcatheter aortic valve replacement in the PARTNER trial. Ann Thorac Surg 102(4):1172–1180CrossRefPubMedGoogle Scholar
  42. 42.
    Ewe SH, Delgado V, Ng ACT, Antoni ML, van der Kley F, Marsan NA et al (2011) Outcomes after transcatheter aortic valve implantation: transfemoral versus transapical approach. Ann Thorac Surg 92(4):1244–1251CrossRefPubMedGoogle Scholar
  43. 43.
    Hartrumpf M, Erb M, Zytowski M, Kuehnel R-U, Aigner S, Butter C et al (2015) Radiation exposure and contrast volume differ between transapical and transfemoral aortic valve implantation with the Edwards SAPIEN aortic valve. Thorac Cardiovasc Surg 63(6):479–486CrossRefPubMedGoogle Scholar
  44. 44.
    Yamamoto M, Hayashida K, Mouillet G, Chevalier B, Meguro K, Watanabe Y et al (2013) Renal function–based contrast dosing predicts acute kidney injury following transcatheter aortic valve implantation. JACC Cardiovasc Interv 6(5):479–486CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Internal Medicine II-CardiologyUlm University Medical CenterUlmGermany

Personalised recommendations