Clinical Research in Cardiology

, Volume 107, Issue 4, pp 362–367 | Cite as

Systemic inflammation and functional capacity in elderly heart failure patients

  • Sara Radenovic
  • Goran Loncar
  • Andreas Busjahn
  • Svetlana Apostolovic
  • Marija Zdravkovic
  • Valentina Karlicic
  • Jovan Veskovic
  • Elvis Tahirovic
  • Javed Butler
  • Hans-Dirk Düngen
Original Paper
  • 56 Downloads

Abstract

Background

Elevated C-reactive protein (CRP) is associated with adverse outcomes in heart failure (HF) patients. Beta-blocker therapy may lower CRP levels.

Methods and results

To assess if the changes of high-sensitivity (hs) CRP levels in HF patients over 12-week titration with beta-blockers correlate with functional capacity, plasma hs-CRP levels were measured in 488 HF patients [72.1 ± 5.31 years, LVEF 40% (33/50)]. Hs-CRP, NT-proBNP and 6-min-walk-test (6MWT) were assessed at baseline and at week 12. Patients were divided based on hs-CRP changes (cut-off > 0.3 mg/dl) into low–low (N = 225), high–high (N = 132), low–high (N = 54), high–low (N = 77) groups. At baseline, median hs-CRP concentration was 0.25 (0.12/0.53) mg/dl, NT-proBNP 551 (235/1455) pg/ml and average 6MWT distance 334 ± 105 m. NT-proBNP changes were significantly different between the four hs-CRP groups (P = 0.011). NT-proBNP increased in the low–high group by 30 (− 14/88) pg/ml and decreased in the high–low group by − 8 (− 42/32) pg/ml. 6MWT changes significantly differed between groups [P = 0.002; decrease in the low–high group (− 18 ± 90 m) and improvement in the low–low group (24 ± 62 m)].

Conclusion

After beta-blocker treatment, hs-CRP levels are associated with functional capacity in HF patients. Whether this represents a potential target for intervention needs further study.

Keywords

Inflammation Hs-CRP NT-proBNP 6-min-walk-test 

Notes

Compliance with ethical standards

Conflict of interest

J. Butler: Consultant to Amgen, Astra Zeneca, Bayer, Boehringer Ingelheim, Janssen, Novartis, Relypsa, Trevena, ZS Pharma, Stealth Peptide, Medtronic, Merck, CVRx, Luitpold, and Vifor.

References

  1. 1.
    Koenig W (2013) High-sensitivity C-reactive protein and atherosclerotic disease: from improved risk prediction to risk-guided therapy. Int J Cardiol 168(6):5126–5134CrossRefPubMedGoogle Scholar
  2. 2.
    van Empel V, Brunner-La Rocca HP (2015) Inflammation in HFpEF: key or circumstantial? Int J Cardiol 189:259–263CrossRefPubMedGoogle Scholar
  3. 3.
    Huynh K, Van Tassell B, Chow SL (2015) Predicting therapeutic response in patients with heart failure: the story of C-reactive protein. Expert Rev Cardiovasc Ther 13(2):153–61CrossRefPubMedGoogle Scholar
  4. 4.
    Ridker PM, Everett BM, Thuren T, CANTOS Trial Group et al (2017) Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med 377(12):1119–1131CrossRefPubMedGoogle Scholar
  5. 5.
    Prasad K (2006) C-reactive protein lowering agents. Cardiovasc Drug Rev 24(1):33–50CrossRefPubMedGoogle Scholar
  6. 6.
    Rostagno C, Gensini GF (2008) Six-minute walk test: a simple and useful test to evaluate functional capacity in patients with heart failure. Intern Emerg Med 3(3):205–12CrossRefPubMedGoogle Scholar
  7. 7.
    Düngen HD, Apostolović S, Inkrot S, CIBIS-ELD Investigators, Subproject Multicenter Trials in the Competence Network Heart Failure et al (2008) Bisoprolol vs. carvedilol in elderly patients with heart failure: rationale and design of the CIBIS-ELD trial. Clin Res Cardiol 97(9):578–86CrossRefPubMedGoogle Scholar
  8. 8.
    Silva D, Pais de Lacerda A (2012) High-sensitivity C-reactive protein as a biomarker of risk in coronary artery disease. Rev Port Cardiol 31(11):733–45PubMedGoogle Scholar
  9. 9.
    Pearson TA, Mensah GA, Alexander RW, Centers for Disease Control and Prevention; American Heart Association et al (2003) Markers of inflammation and cardiovascular disease: application to clinical and public health practice: a statement for healthcare professionals from the Centers for Disease Control and Prevention and the American Heart Association. Circulation 107(3):499–511CrossRefPubMedGoogle Scholar
  10. 10.
    Van Linthout S, Tschöpe C (2017) Inflammation—cause or consequence of heart failure or both? Curr Heart Fail Rep.  https://doi.org/10.1007/s11897-017-0337-9 PubMedPubMedCentralGoogle Scholar
  11. 11.
    Nessler J, Nessler B, Golebiowska-Wiatrak R et al (2013) Serum biomarkers and clinical outcomes in heart failure patients treated de novo with carvedilol. Cardiol J 20(2):144–51CrossRefPubMedGoogle Scholar
  12. 12.
    Joynt KE, Gattis WA, Hasselbald V et al (2004) Effect of angiotensin-converting enzyme inhibitors, beta-blockers, statins, and aspirin on C-reactive protein levels in outpatients with heart failure. Am J Cardiol 93:783–785CrossRefPubMedGoogle Scholar
  13. 13.
    Francis GS, Felker GM, Tang WH (2016) A test in context: critical evaluation of natriuretic peptide testing in heart failure. J Am Coll Cardiol 67(3):330–337CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Dopheide JF, Geissler P, Rubrech J et al (2016) Influence of exercise training on proangiogenic TIE-2 monocytes and circulating angiogenic cells in patients with peripheral arterial disease. Clin Res Cardiol 105(8):666–76.  https://doi.org/10.1007/s00392-016-0966-0 CrossRefPubMedGoogle Scholar
  15. 15.
    Dopheide JF, Scheer M, Doppler C et al (2015) Change of walking distance in intermittent claudication: impact on inflammation, oxidative stress and mononuclear cells: a pilot study. Clin Res Cardiol 104(9):751–63.  https://doi.org/10.1007/s00392-015-0840-5 CrossRefPubMedGoogle Scholar
  16. 16.
    Kuo HK, Gore JM (2015) Relation of heart rate recovery after exercise to insulin resistance and chronic inflammation in otherwise healthy adolescents and adults: results from the National Health and Nutrition Examination Survey (NHANES) 1999–2004. Clin Res Cardiol 104(9):764–72  https://doi.org/10.1007/s00392-015-0843-2 CrossRefPubMedGoogle Scholar
  17. 17.
    Fernandes-Silva MM, Guimarães GV et al (2017) Inflammatory biomarkers and effect of exercise on functional capacity in patients with heart failure: insights from a randomized clinical trial. Eur J Prev Cardiol 24(8):808–817CrossRefPubMedGoogle Scholar
  18. 18.
    Moreira DM1, Vieira JL, Gottschall CA (2009) The effects of METhotrexate therapy on the physical capacity of patients with ISchemic heart failure: a randomized double-blind, placebo-controlled trial (METIS trial). J Card Fail 15(10):828–34CrossRefPubMedGoogle Scholar
  19. 19.
    Volaklis KA,Halle M, Koenig W et al (2015) Association between muscular strength and inflammatory markers among elderly persons with cardiac disease: results from the KORA-age study. Clin Res Cardiol 104(11):982–9.  https://doi.org/10.1007/s00392-015-0867-7 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Sara Radenovic
    • 1
  • Goran Loncar
    • 2
    • 3
  • Andreas Busjahn
    • 4
  • Svetlana Apostolovic
    • 5
  • Marija Zdravkovic
    • 6
  • Valentina Karlicic
    • 7
  • Jovan Veskovic
    • 1
  • Elvis Tahirovic
    • 1
  • Javed Butler
    • 8
  • Hans-Dirk Düngen
    • 1
  1. 1.Department of CardiologyCharité UniversitätsmedizinBerlinGermany
  2. 2.Cardiology DepartmentZvezdara University Medical CenterBelgradeSerbia
  3. 3.Faculty of MedicineUniversity of BelgradeBelgradeSerbia
  4. 4.HealthTwiSt GmbHBerlinGermany
  5. 5.Clinic for Cardiovascular DiseasesClinical Center NisNisSerbia
  6. 6.Department of Cardiology, Faculty of Medicine, University Hospital Medical Center Bezanijska KosaUniversity of BelgradeBelgradeSerbia
  7. 7.Health Center CacakCacakSerbia
  8. 8.Cardiology DivisionStony Brook UniversityStony BrookUSA

Personalised recommendations