Skip to main content

Advertisement

Log in

Circadian rhythm of blood cardiac troponin T concentration

  • Original Paper
  • Published:
Clinical Research in Cardiology Aims and scope Submit manuscript

Abstract

Introduction

High-sensitivity cardiac troponin assays have significantly improved the sensitivity of myocardial infarction detection by using cutoff values and early absolute changes. However, variation in repeated measures also depends on biological variability. This study aimed to assess the potential circadian component of this biological variability.

Methods

17 healthy volunteers were recruited, and standardized conditions for physical activity, meals, exposure to light and duration of sleep were imposed. Blood samples were collected every 4 h and high-sensitivity troponin T assay with a limit of detection of 3 ng/l and a 99th percentile of 14 ng/l were used. Circadian variations were analyzed using the cosinor method.

Results

Statistically significant circadian variations were observed for body temperature, heart rate, and systolic/diastolic arterial blood pressures (p < 0.01 using both a non-adjusted cosinor model and a gender- and BMI-adjusted cosinor model). The amplitudes of the circadian variations were 18.93, 6, 15.35, and 1.92%, respectively. A statistically significant circadian biological variation of troponin blood concentrations was evidenced (p < 0.01 in both the non-adjusted cosinor model and the gender- and BMI-adjusted cosinor), with an amplitude of 20.5% (average: 4.39 ng/l; amplitude: 0.9 ng/l; peak at 06:00 and nadir at 18:00).

Discussion

This study demonstrates a circadian biological variation in blood troponin concentration in a healthy population. The amplitude of this variation challenges the cutoff value for instant rule-out of the rapid rule-in/rule-out of the recent European guidelines for the management of acute coronary syndromes. These findings deserve further investigation in a population at risk of myocardial infarction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Leibundgut G, Gick M, Morel O et al (2016) Discordant cardiac biomarker levels independently predict outcome in ST-segment elevation myocardial infarction. Clin Res Cardiol 105(5):432–440

    Article  CAS  PubMed  Google Scholar 

  2. Thygesen K, Alpert JS, Jaffe AS et al (2012) Third universal definition of myocardial infarction. J Am Coll Cardiol 60(16):1581–1598

    Article  PubMed  Google Scholar 

  3. Amsterdam EA, Wenger NK, Brindis RG et al (2014) 2014 AHA/ACC guideline for the management of patients with non-ST-elevation acute coronary syndromes: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on practice guidelines. Circulation 130(25):2354–2394

    Article  PubMed  Google Scholar 

  4. Roffi M, Patrono C, Collet JP et al (2016) 2015 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation: task force for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation of the European Society of Cardiology (ESC). Eur Heart J 37(3):267–315

    Article  PubMed  Google Scholar 

  5. Boeddinghaus J, Reichlin T, Nestelberger T et al (2017) Early diagnosis of acute myocardial infarction in patients with mild elevations of cardiac troponin. Clin Res Cardiol 106(6):457–467

    Article  CAS  PubMed  Google Scholar 

  6. Body R, Carley S, McDowell G et al (2011) Rapid exclusion of acute myocardial infarction in patients with undetectable troponin using a high-sensitivity assay. J Am Coll Cardiol 58(13):1332–1339

    Article  PubMed  Google Scholar 

  7. McKie PM, Heublein DM, Scott CG et al (2013) Defining high-sensitivity cardiac troponin concentrations in the community. Clin Chem 59(7):1099–1107

    Article  CAS  PubMed  Google Scholar 

  8. Gore MO, Seliger SL, Defilippi CR et al (2014) Age- and sex-dependent upper reference limits for the high-sensitivity cardiac troponin T assay. J Am Coll Cardiol 63(14):1441–1448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wallace TW, Abdullah SM, Drazner MH et al (2006) Prevalence and determinants of troponin T elevation in the general population. Circulation 113(16):1958–1965

    Article  CAS  PubMed  Google Scholar 

  10. deFilippi C, Seliger SL, Kelley W et al (2012) Interpreting cardiac troponin results from high-sensitivity assays in chronic kidney disease without acute coronary syndrome. Clin Chem. 58(9):1342–1351

    Article  CAS  PubMed  Google Scholar 

  11. Sennels HP, Jorgensen HL, Goetze JP, Fahrenkrug J (2012) Rhythmic 24-hour variations of frequently used clinical biochemical parameters in healthy young males—the Bispebjerg study of diurnal variations. Scand J Clin Lab Invest 72(4):287–295

    Article  CAS  PubMed  Google Scholar 

  12. Kilias A, Klingel K, Gawaz M, Kramer U, Seizer P (2015) A patient with a rare cause of elevated troponin I. Clin Res Cardiol 104(9):794–797

    Article  PubMed  Google Scholar 

  13. Poryo M, Khreish F, Schafers HJ, Abdul-Khaliq H (2016) A case of myocardial bridging as a rare cause of chest pain in children. Clin Res Cardiol 105(3):279–281

    Article  PubMed  Google Scholar 

  14. Nelson W, Tong YL, Lee JK, Halberg F (1979) Methods for cosinor-rhythmometry. Chronobiologia. 6(4):305–323

    CAS  PubMed  Google Scholar 

  15. Marti-Soler H, Gubelmann C, Aeschbacher S et al (2014) Seasonality of cardiovascular risk factors: an analysis including over 230 000 participants in 15 countries. Heart 100(19):1517–1523

    Article  CAS  PubMed  Google Scholar 

  16. Bossard M, Theriault S, Aeschbacher S et al (2017) Factors independently associated with cardiac troponin I levels in young and healthy adults from the general population. Clin Res Cardiol 106(2):96–104

    Article  CAS  PubMed  Google Scholar 

  17. Jung C, Fuernau G, Eitel I et al (2017) Incidence, laboratory detection and prognostic relevance of hypoxic hepatitis in cardiogenic shock. Clin Res Cardiol 106(5):341–349

    Article  CAS  PubMed  Google Scholar 

  18. Klinkenberg LJ, van Dijk JW, Tan FE, van Loon LJ, van Dieijen-Visser MP, Meex SJ (2014) Circulating cardiac troponin T exhibits a diurnal rhythm. J Am Coll Cardiol 63(17):1788–1795

    Article  CAS  PubMed  Google Scholar 

  19. White HD (2011) Pathobiology of troponin elevations: do elevations occur with myocardial ischemia as well as necrosis? J Am Coll Cardiol 57(24):2406–2408

    Article  CAS  PubMed  Google Scholar 

  20. Durgan DJ, Young ME (2010) The cardiomyocyte circadian clock: emerging roles in health and disease. Circ Res 106(4):647–658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rau E, Meyer DK (1975) A diurnal rhythm of incorporation of L-[3H] leucine in myocardium of the rat. Recent Adv Stud Cardiac Struct Metab 7:105–110

    CAS  PubMed  Google Scholar 

  22. Reiter R, Swingen C, Moore L, Henry TD, Traverse JH (2012) Circadian dependence of infarct size and left ventricular function after ST elevation myocardial infarction. Circ Res 110(1):105–110

    Article  CAS  PubMed  Google Scholar 

  23. Fournier S, Eeckhout E, Mangiacapra F et al (2012) Circadian variations of ischemic burden among patients with myocardial infarction undergoing primary percutaneous coronary intervention. Am Heart J 163(2):208–213

    Article  PubMed  Google Scholar 

  24. Fournier S, Taffe P, Radovanovic D et al (2015) Myocardial infarct size and mortality depend on the time of day—a large multicenter study. PLoS One 10(3):e0119157

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ammirati E, Cristell N, Cianflone D et al (2013) Questing for circadian dependence in ST-segment-elevation acute myocardial infarction: a multicentric and multiethnic study. Circ Res 112(10):e110–e114

    Article  CAS  PubMed  Google Scholar 

  26. Andres E, Cordero A, Magan P et al (2012) Long-term mortality and hospital readmission after acute myocardial infarction: an eight-year follow-up study. Rev Esp Cardiol (Engl Ed). 65(5):414–420

    Article  PubMed  Google Scholar 

  27. Frioes F, Lourenco P, Laszczynska O et al (2015) Prognostic value of sST2 added to BNP in acute heart failure with preserved or reduced ejection fraction. Clin Res Cardiol 104(6):491–499

    Article  PubMed  Google Scholar 

  28. ter Maaten JM, Valente MA, Metra M et al (2016) A combined clinical and biomarker approach to predict diuretic response in acute heart failure. Clin Res Cardiol 105(2):145–153

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Muller.

Ethics declarations

Conflict of interest

No author had any potential conflict of interest to disclose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fournier, S., Iten, L., Marques-Vidal, P. et al. Circadian rhythm of blood cardiac troponin T concentration. Clin Res Cardiol 106, 1026–1032 (2017). https://doi.org/10.1007/s00392-017-1152-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00392-017-1152-8

Keywords

Navigation