Skip to main content
Log in

Cyclic changes in area- and perimeter-derived effective dimensions of the aortic annulus measured with multislice computed tomography and comparison with metric intraoperative sizing

  • Original Paper
  • Published:
Clinical Research in Cardiology Aims and scope Submit manuscript

Abstract

Aims

Multislice computed tomography (MSCT) is recommended for annular sizing prior to transcatheter aortic valve implantation (TAVI), but it remains unclear whether systolic or diastolic reconstructions should be used and whether the effective annular diameter should be derived by area or perimeter. In this study these different approaches were compared with intraoperative sizing.

Methods

In 52 patients who were evaluated but deemed unsuitable for TAVI, the annulus was measured during conventional surgery using metric sizers (AnnOp) and compared with MSCT measurements (cross-sectional diameter derived by area [AnnAsys, AnnAdia; AnnAmean = (AnnAsys + AnnAdia)/2] and perimeter (AnnPsys, AnnPdia) in systole and diastole). Furthermore, TAVI was simulated based on AnnOp and the impact of the various MSCT approaches on sizing strategy was determined.

Results

The best agreement with AnnOp [mean difference (limits of agreement)] was shown for AnnAmean [0.03 mm (−1.9 to 1.96)], whereas the strongest deviation was noted for AnnPsys [−1.08 mm (−3.01 to 0.86)]. Mean differences between systole and diastole were significant but small: 0.82 mm (3.5 %) for area- and 0.81 mm (3.3 %) for perimeter-derived measurements. Simulation of TAVI revealed the least change of strategy for AnnAmean (76.9 %) as compared with AnnPsys (53.8 %); between AnnAsys and AnnAdia sizing would have been deviant in 17.3 % due to relatively large intraindividual cyclic differences.

Conclusions

AnnAmean demonstrated the best agreement with AnnOp, whereas perimeter-derived measurements were somewhat overestimated. Despite a negligible average difference between systolic and diastolic annular values, in a subset of patients the intraindividual cyclic variability was relatively large and potentially of clinical impact.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hamm CW, Mollmann H, Holzhey D et al (2014) The German Aortic Valve Registry (GARY): in-hospital outcome. Eur Heart J 35(24):1588–1598. doi:10.1093/eurheartj/eht381

    Article  PubMed  Google Scholar 

  2. Blumenstein J, Liebetrau C, Van Linden A et al (2013) Recent advances in transcatheter aortic valve implantation: novel devices and potential shortcomings. Curr Cardiol Rev 9(4):274–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jilaihawi H, Kashif M, Fontana G et al (2012) Cross-sectional computed tomographic assessment improves accuracy of aortic annular sizing for transcatheter aortic valve replacement and reduces the incidence of paravalvular aortic regurgitation. J Am Coll Cardiol 59(14):1275–1286. doi:10.1016/j.jacc.2011.11.045 (S0735-1097(12)00077-0 [pii])

    Article  PubMed  Google Scholar 

  4. Van Linden A, Kempfert J, Blumenstein J et al (2013) Prosthesis-patient mismatch after transcatheter aortic valve implantation using the Edwards SAPIEN prosthesis. Thorac Cardiovasc Surg 61(5):414–420. doi:10.1055/s-0032-1311534

    Article  PubMed  Google Scholar 

  5. Schymik G, Heimeshoff M, Bramlage P et al (2014) Ruptures of the device landing zone in patients undergoing transcatheter aortic valve implantation: an analysis of TAVI Karlsruhe (TAVIK) patients. Clin Res Cardiol 103(11):912–920. doi:10.1007/s00392-014-0729-8

    Article  PubMed  Google Scholar 

  6. Pontone G, Andreini D, Bartorelli AL et al (2011) Feasibility and accuracy of a comprehensive multidetector computed tomography acquisition for patients referred for balloon-expandable transcatheter aortic valve implantation. Am Heart J 161(6):1106–1113. doi:10.1016/j.ahj.2011.03.003 (S0002-8703(11)00184-0 [pii])

    Article  PubMed  Google Scholar 

  7. Wood DA, Tops LF, Mayo JR et al (2009) Role of multislice computed tomography in transcatheter aortic valve replacement. Am J Cardiol 103(9):1295–1301. doi:10.1016/j.amjcard.2009.01.034

    Article  PubMed  Google Scholar 

  8. Tops LF, Wood DA, Delgado V et al (2008) Noninvasive evaluation of the aortic root with multislice computed tomography implications for transcatheter aortic valve replacement. JACC Cardiovasc Imaging 1(3):321–330. doi:10.1016/j.jcmg.2007.12.006 (S1936-878X(08)00031-4 [pii])

    Article  PubMed  Google Scholar 

  9. Bertaso AG, Wong DT, Liew GY et al (2012) Aortic annulus dimension assessment by computed tomography for transcatheter aortic valve implantation: differences between systole and diastole. Int J Cardiovasc Imaging 28(8):2091–2098. doi:10.1007/s10554-012-0018-4

    Article  PubMed  Google Scholar 

  10. O’Sullivan CJ, Stortecky S, Buellesfeld L et al (2014) Preinterventional screening of the TAVI patient: how to choose the suitable patient and the best procedure. Clin Res Cardiol 103(4):259–274. doi:10.1007/s00392-014-0676-4

    Article  PubMed  Google Scholar 

  11. Kempfert J, Van Linden A, Lehmkuhl L et al (2012) Aortic annulus sizing: echocardiographic versus computed tomography derived measurements in comparison with direct surgical sizing. Eur J Cardiothorac Surg 42(4):627–633 (10.1093/ejcts/ezs064ezs064 [pii])

    Article  PubMed  Google Scholar 

  12. Opolski MP, Kim WK, Liebetrau C et al (2015) Diagnostic accuracy of computed tomography angiography for the detection of coronary artery disease in patients referred for transcatheter aortic valve implantation. Clin Res Cardiol 104(6):471–480. doi:10.1007/s00392-014-0806-z

    Article  PubMed  Google Scholar 

  13. Hausleiter J, Martinoff S, Hadamitzky M et al (2010) Image quality and radiation exposure with a low tube voltage protocol for coronary CT angiography results of the PROTECTION II Trial. JACC Cardiovasc Imaging 3(11):1113–1123. doi:10.1016/j.jcmg.2010.08.016

    Article  PubMed  Google Scholar 

  14. Dashkevich A, Blanke P, Siepe M et al (2011) Preoperative assessment of aortic annulus dimensions: comparison of noninvasive and intraoperative measurement. Ann Thorac Surg 91(3):709–714. doi:10.1016/j.athoracsur.2010.09.038

    Article  PubMed  Google Scholar 

  15. Wang H, Hanna JM, Ganapathi A et al (2015) Comparison of aortic annulus size by transesophageal echocardiography and computed tomography angiography with direct surgical measurement. Am J Cardiol 115(11):1568–1573. doi:10.1016/j.amjcard.2015.02.060

    Article  PubMed  Google Scholar 

  16. de Heer LM, Budde RP, Mali WP et al (2011) Aortic root dimension changes during systole and diastole: evaluation with ECG-gated multidetector row computed tomography. Int J Cardiovasc Imaging 27(8):1195–1204. doi:10.1007/s10554-011-9838-x

    Article  PubMed  PubMed Central  Google Scholar 

  17. Murphy DT, Blanke P, Alaamri S et al (2015) Dynamism of the aortic annulus: effect of diastolic versus systolic CT annular measurements on device selection in transcatheter aortic valve replacement (TAVR). J Cardiovasc Comput Tomogr. doi:10.1016/j.jcct.2015.07.008

    Google Scholar 

  18. Blanke P, Russe M, Leipsic J et al (2012) Conformational pulsatile changes of the aortic annulus: impact on prosthesis sizing by computed tomography for transcatheter aortic valve replacement. JACC Cardiovasc Interv 5(9):984–994. doi:10.1016/j.jcin.2012.05.014

    Article  PubMed  Google Scholar 

  19. Lehmkuhl L, Foldyna B, Von Aspern K et al (2012) Inter-individual variance and cardiac cycle dependency of aortic root dimensions and shape as assessed by ECG-gated multi-slice computed tomography in patients with severe aortic stenosis prior to transcatheter aortic valve implantation: is it crucial for correct sizing? Int J Cardiovasc Imaging. doi:10.1007/s10554-012-0123-4

    PubMed Central  Google Scholar 

  20. Yoshikawa H, Suzuki M, Hashimoto G et al (2013) Assessment of cyclic changes in the diameter of the aortic annulus using speckle-tracking trans-esophageal echocardiography. Ultrasound Med Biol 39(11):2084–2090. doi:10.1016/j.ultrasmedbio.2013.06.011

    Article  PubMed  Google Scholar 

  21. Hamdan A, Guetta V, Konen E et al (2012) Deformation dynamics and mechanical properties of the aortic annulus by 4-dimensional computed tomography: insights into the functional anatomy of the aortic valve complex and implications for transcatheter aortic valve therapy. J Am Coll Cardiol 59(2):119–127. doi:10.1016/j.jacc.2011.09.045

    Article  PubMed  Google Scholar 

  22. Barbanti M, Yang TH, Rodes Cabau J et al (2013) Anatomical and procedural features associated with aortic root rupture during balloon-expandable transcatheter aortic valve replacement. Circulation 128(3):244–253. doi:10.1161/CIRCULATIONAHA.113.002947

    Article  PubMed  Google Scholar 

  23. Thubrikar M, Piepgrass WC, Shaner TW et al (1981) The design of the normal aortic valve. Am J Physiol 241(6):H795–H801

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Elizabeth Martinson, PhD, from the KHFI Editorial Office for her editorial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Won-Keun Kim.

Ethics declarations

Conflict of interest

WK, HM and JK are proctors for Symetis SA; WK and HM are proctors for St. Jude Medical.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, WK., Meyer, A., Möllmann, H. et al. Cyclic changes in area- and perimeter-derived effective dimensions of the aortic annulus measured with multislice computed tomography and comparison with metric intraoperative sizing. Clin Res Cardiol 105, 622–629 (2016). https://doi.org/10.1007/s00392-016-0971-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00392-016-0971-3

Keywords

Navigation